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Abstract  Article Information 

Climate change and variability are real global phenomena affecting agriculture, health, 

water resources, and the environment. This research examines the Effect of Climate 

Variability on Maize Yield and Household Adaptation Practices in Bedele District, focusing 

on climate trends, impacts on maize yields, and factors influencing adaptation strategies. 

Using tools like R insat (7.16), XLSTAT (2018), and Stata (13), data were analyzed from 

the Ethiopian Meteorology Institute (EMI) and Woreda Agricultural Office. Results showed 

high variability in monthly, belg, and bega rainfall, while annual and kremt rainfall were less 

variable. The onset of rainfall (93.3%) occurred in April, and 63.3% of end dates fell in 

November, with less variability in the length of the growing period (LGP). Temperature 

analyses confirmed minimal variability in monthly, annual, and seasonal temperatures. 

Regression analyses indicated that the start of the season (SOS), end of the season (EOS), 

LGP, and kremt rainfall negatively impacted maize yields. Effective adaptation strategies 

identified included crop diversification, tree planting, irrigation, improved crop varieties, and 

soil water conservation. These were influenced by factors such as education, farm income, 

land size, credit access, and climate training. For example, education positively affected 

crop variety adoption and soil water conservation, while credit access negatively impacted 

tree planting. Policymakers and farmers should align practices with climate patterns, 

optimizing onset and end dates for better crop production. Promoting education, extension 

services, and access to climate training is essential to enhance adaptation strategies. 
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INTRODUCTION

Climate change, influenced by natural and human factors, poses a 

significant global threat. Since the industrial era, human activities, 

particularly rising greenhouse gas emissions, have accelerated global 

warming, with temperatures rising by 0.4°C since 1980 (IPCC, 2012; 

IPCC, 2014). Developing regions, especially Sub-Saharan Africa, are 

disproportionately affected due to limited adaptive capacities and 

reliance on climate-sensitive sectors like agriculture (Matewos, 2019). 

In East Africa, rainfall variability has intensified, with long rains 

becoming drier and short rains wetter since the mid-1980s (Palmer et 

al., 2023). Ethiopia, where agriculture contributes 32.6% to GDP, 77% 

of exports, and employs 72.7% of the labor force, is particularly exposed 

to the impacts of climate change and variability (The Federal Democratic 

Republic of Ethiopia", 2024) Maize, a staple crop and key to food 

security, is cultivated by nine million Ethiopian smallholder farmers 

under diverse agro-ecological conditions (FAO, 2018). 

Climate impacts on maize production are profound. Globally, maize 

yields declined by 12 Mt annually between 1981 and 2002 due to 

warming, and future temperature increases of 2°C and 4°C could reduce 

yields by 20–40% and 40–60%, respectively (Lobell et al., 2011; 

Tigchelaar et al., 2018). In Ethiopia, maize yields average 3.6 t/ha, 

below the global average of 5.6 t/ha, due to abiotic stresses like 

increasing temperatures, decreasing rainfall, and poor resource 

management (Tesfaye et al., 2015; Tolera et al., 2018). 

Rainfall variability exacerbates challenges. Excess water during early 

growth stages hampers development, while reducing soil water during 

grain filling decreases yields (Hatfield and Prueger, 2011). Variability 

also limits agricultural input application, further reducing productivity 

(Kassie et al., 2014). While precipitation changes can sometimes 

mitigate temperature impacts, the relationship between rainfall and 

maize yield is complex, varying by region and conditions (Li et al., 2019). 
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Adaptation strategies are critical to counteracting climate impacts on 

agriculture. Climate-resilient crops, agronomic practices like irrigation 

scheduling, and integrated adaptation measures can enhance 

productivity and food security (Ahmed et al., 2023). Climate change 

poses serious threats to resource-poor farmers in Ethiopia, potentially 

leading to livelihood loss or forced displacement (Assan et al., 2018). 

Adaptation is therefore essential, but its success depends on locally 

tailored solutions that reflect specific environmental and socio-economic 

contexts. However, existing research often lacks focus on grassroots 

realities, offering generalized or policy-level insights with limited 

practical relevance. There is a clear gap in evidence-based, context-

specific adaptation strategies that consider farmers’ knowledge, 

constraints, and coping mechanisms in the study area. This study seeks 

to address the existing knowledge gap by identifying and evaluating 

effective, locally driven climate adaptation practices for vulnerable rural 

communities. Accordingly, the research was initiated to assess climate 

variability, its impact on maize yield, and the household adaptation 

strategies employed in Bedele District, southwestern Ethiopia. 

MATERIALS AND METHODS 

Description of the Study Area  

The study took place in the Bedele area of the Buno Bedele Zone 

(Figure 1), located approximately 484 km southwest of Addis Ababa. 

This district comprises 41 kebeles and is geographically situated 

between latitudes 8°14'30"N and 8°37'53"N and longitudes 36°13'17"E 

and 36°35'05"E. It is bordered by Gechi district to the south, Dabo Hana 

district to the north, Chora district to the west, and Jimma Arjo district to 

the (BWAO 2023). 

 

Figure 1: Location Map of the Study Area  

Research Design 

To assess climate variability, its impact on maize yield, and household 

adaptation practices, this study employed a cross-sectional survey 

design integrating both qualitative and quantitative research 

approaches. The quantitative aspect focused on analyzing maize yields, 

climate data, and household data. The qualitative component utilized 

information gathered through key informant interviews, focus group 

discussions (FGDs), household surveys, and questionnaires. 

Types and Sources of Data 

The study utilized a combination of primary and secondary data to 

incorporate both qualitative and quantitative elements. Primary data 

were collected through questionnaires, focus group discussions, and 

key informant interviews. Secondary data, daily rainfall, and 

temperature grid data for 31 years (1992–2022) were obtained from 

NASA’s Earth Observing System Data and Information System 

(EOSDIS) and the local Natural Resources Office to assess climate 

variability. For the correlation and regression analysis between climate 

and maize yield, a 15-year dataset was used. 

Sampling Techniques and Procedure 

This study employed a multi-stage sampling technique to select kebeles 

(administrative units) and households systematically. Bedele District 

was purposively chosen for its maize production potential and its 

observed climate variability impacts on yield. Five kebeles Urgesa, 

Dabena Deru, Ilike Kerero, Kolo Siri, and Chilalo Bildima were 

purposively selected based on their agroecological diversity and maize 

production intensity. Systematic random sampling was used to select 

individual households. From the total 2833 households in these kebeles, 

1979 were maize producers. Using Yamane's (1967) formula at a 92% 

confidence level, a degree of variability of 0.08, and a precision level of 

±8%, the sample size was calculated as:                 

   

n = 𝑁/1+N (𝑒) 2 ………………………………………………1 

145
08019791

1979

2
=

+
=

).(
n

 

Where n is the sample size, N is the number of maize producers in the 

study area (1979), and e is the level of precision (8%).   

Data Collection Tools 

Household survey 

A semi-structured questionnaire, based on the study’s goals, was used 

to collect data from 145 households (April 12–September 20, 2023). It 

covered socioeconomic details, maize productivity impacts from climate 

variability, adaptation strategies, and influencing factors. To ease 

communication, it was translated into Afaan Oromo. 

Key informant interview 

Interviews were held with knowledgeable individual farmers, 

development agents, kebele officials, and district officers on climate 

impacts and local adaptation strategies. 

Focus group discussion 

FGDs involved 8–12 experienced male and female householders, 

selected with the help of village leaders, to discuss adaptation practices 

and the effects of climate variability on maize production. 

Methods of Data Analysis 

Analyses of rainfall and temperature variability  

Thirty-one years (1992–2022) of daily climate data were analyzed to 

assess monthly, seasonal, and annual variability in rainfall and 

temperature. Descriptive statistics (mean, max, min, standard deviation) 

were computed using Excel 2016. Rainfall onset, cessation, Length of 

Growing Season (LGS), and the number of rainy days were determined 

using Excel and R Instat 7.16. Rain onset was defined based on Zewdu 

et al. (2005) and R. Stern et al. (2003) as the first occurrence of ≥20 mm 

of rainfall over 3 consecutive days after April 1st (the assumed planting 

date), with no dry spell longer than 9 days in the next 30 days. Cessation 

followed the criteria of Zewdu et al. (2005) and Stern et al. (2006), 

defined as the point after the first week of September when daily 

evapotranspiration exceeds rainfall, and soil water storage reaches 

zero.LGS was calculated as the number of days between onset and 

cessation. Rainy days were those receiving ≥0.85 mm, following Love 

et al. (2008). The Coefficient of Variation (CV) was used to assess 

variability:  

CV% =    
α

µ
𝑋100%  …………………………………………………….2   

According to Hare (2003), climate is: 

Less variable when CV < 20% 
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Moderately variable when CV = 20–30% 

Highly variable when CV > 30% 

Analysis of rainfall and temperature trends 

Temperature and rainfall trends were analyzed to assess the direction, 

magnitude, and statistical significance of variability using the non-

parametric Mann-Kendall (MK) test (Mann, 1945). This method is 

preferred for its robustness with non-normally distributed data and 

resilience to outliers. The MK test statistic (S) is computed as:  

                    S=∑ ∑ sgn(xj −n
j=i+1

n−1
i=1

xi)………………………………………3 

              sgn(xj−xi) =∫ .

+1if(xj−xi)>0

0 if(xj−xi)=0

−1if(xj−xi)<0
..........................................................4 

Where xjx and xix_ are monthly, seasonal, or annual values and j>ij . A 

positive S indicates an increasing trend; a negative indicates 

decreasing. 

The standardized test statistic Z is: 

      Z=∫ 0, if s = 0
s−1

δ
 if s>0

s+1

δ
 if s<0

    ……..………………………..................5 

Positive values of the Z statistic indicate an increasing trend, while 

negative values indicate a decreasing trend. A trend is considered 

statistically significant when the absolute Z value exceeds the critical 

value Z1−αZ_{1-\alpha}Z1−α, with α set at 0.05 in this study (Mahmood, 

2019), based on standard normal distribution tables. 

Kendall’s tau was used to assess the strength and direction of 

association between two variables (Mondal et al., 2012). Values range 

from –1 (perfect negative correlation) to +1 (perfect positive correlation), 

indicating how the ranks of paired observations move together. 

The Sen’s slope estimator was applied to quantify the magnitude of 

trends in seasonal and annual series (Wang et al., 2016). This method 

is robust against outliers and data errors (Simane et al., 2016). The 

slope β\betaβ is calculated as the median of all pairwise slopes between 

data points (Feng et al., 2016) 

Qi = 
xj−xk

j−k
, f or i=1, 2………… N    …………………………6 

Where xj and xk are data points at time j and (j>k), respectively. For all 

this analysis, XLSTAT 2018, which consists of a program of Mann-

Kendall, was used.  

Analysis of rainfall anomaly (extreme event) 

The Standardized Rainfall Anomaly (SRA) was used to assess inter-

annual variability relative to the long-term mean, helping to identify dry 

(negative values) and wet (positive values) years, as well as the 

frequency and severity of droughts (Woldeamlak & Conway, 2007; 

Ayalew et al., 2012). It is computed as:  

 SRA (Z) = (pt − pm) ⁄ ( σ )      …..…………………………...7 

Where Pt is annual (rainfall or temperature) in year t, Pm is long-term 

mean annual (rainfall or temperature) throughout observation, and σ is 

the standard deviation of rainfall Drought and wetness conditions were 

classified based on McKee et al. (1993) as follows: 

Extremely wet: SRA ≥ 2, Very wet: 1.5 ≤ SRA < 2, Moderately wet: 1 ≤ 

SRA < 1.5, Near normal: –0.99 ≤ SRA ≤ 0.99, Moderately dry: –1.49 ≤ 

SRA < –1, Severely dry: –1.99 ≤ SRA < –1.5, Extremely dry: SRA ≤ –2. 

The analysis was performed using R Instant Version 7.16 and Excel 

2016. 

Correlation and Regression Analysis 

To assess the impact of temperature and rainfall on maize production, 

both correlation and multiple regression analyses were performed using 

SPSS version 26. Maize yield (qt/ha) was the dependent variable, and 

the independent variables included Kiremt total rainfall, mean maximum 

and minimum temperatures, onset date, end date, and length of growing 

period (LGP). The Pearson correlation coefficient (r) was used to 

determine the linear relationship between maize yield and climate 

variables. The formula for Pearson's r is as: 

r =    
n ∑ xy−∑ x ∑ y

√n ∑ x2−(∑ x)2x√∑ y2−(∑ y)2

……..………………………………8 

Where; r = Pearson correlation coefficient between X (climate variables) 

and Y (maize yields); ∑X = Sum of the data in X distribution; ∑Y = Sum 

of the data in Y distribution; ∑XY = Sum of the product of X and Y; ∑X2 

= Sum of the squared X; ∑Y2 = Sum of the squared Y; (∑X) 2 = Squared 

of sum of X; (∑Y) 2 = Squared of sum of Y; n = Number of pairs of the 

measurement. Where: coefficient (r) ranges from -1 to +1. A correlation 

coefficient (r) close to +1 indicates a strong positive relationship, -1 

indicates a strong negative relationship and 0 indicates no relation. In 

the regression analysis, the effects of rainfall and temperature on maize 

yields were examined using the following model: 

           y = a + b1x1+ b2x2 + e …………………………………9 

  y = Dependent variable (maize yield in quintals/ha), a = Y-intercept, b1, 

b2  = Regression coefficients for rainfall and temperature, x1, x2  = 

Independent variables (rainfall and temperature parameters), e = Error 

term or residuals. The coefficient of multiple determination (R²) was 

used to assess how much of the variation in maize yield could be 

explained by the climatic parameters. R² is calculated as:   

                      R2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
……………………………….…………10 

Where SSE is the sum of squared error, SSR is the sum of squared 

regression, SST is the sum of squared total. In general, R2 measures 

how successful the fit is in explaining the variation of the data.  

Econometric analysis 

 Econometric models like multinomial probit, multinomial logit, and 

multivariate probit (MVP) are key for analyzing categorical dependent 

variables. While the multinomial logit model is useful, it is limited by the 

independence of irrelevant alternatives (IIA) assumption, ignoring 

interrelationships between alternatives (Abrham et al., 2017; Lee Flang 

et al., 2015). 

The MVP model addresses this by accounting for correlated error terms 

and interdependencies, making it suitable for studying simultaneous 

adaptation strategies like tree planting, soil conservation, and irrigation, 

which are often interconnected (Aemro et al., 2012; Piya, 2012). By 

relaxing the IIA assumption, MVP offers a more accurate view of 

decision-making. In this study, MVP was used to assess how factors 

such as sex, age, education, farm experience, income, and climate-

related training affect adaptation to climate variability (Belay et al., 2017; 

Matewos, 2019; Gebrehaweria et al., 2016). Data analyzed with STATA 

version 16 highlighted that adaptation strategies are shaped by both 

observed and unobserved factors (Blederbos et al., 2004). 

 Y1∗=X1β1+ϵ1\[Y2∗=X2β2+ϵ2\[⋮ \[Yk∗=Xkβk+ϵk……………11 

Y1∗, Y2∗,…, Yk∗ are the latent variables associated with each equation., 

X1,X2,…, Xk are the sets of explanatory variables for each equation., β 

1β 2 ,…,β k are the coefficient vectors to be estimated and ϵ1,ϵ2,…,ϵk

 are the error terms, assumed to follow a multivariate normal distribution 

with mean vector 0 and covariance matrix ΣΣ. 

RESULTS AND DISCUSSIONS 

Climate Analysis  

Rainfall analysis  

Monthly rainfall analysis  

Monthly-analyzed data from 1992 to 2022 indicated that the study area 

received the lowest mean precipitation in January (31.3 mm) and the 

highest in June (347 mm) (Table 1). The coefficient of variation (CV) 

analysis showed January rainfall was extremely variable (CV = 109.1%), 
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while other months were highly variable except September, which had 

a relatively low CV of 29.2%. This suggests that overall rainfall in the 

area was moderately variable and less reliable. However, during the 

main growing season (June to September), when crop production is at 

its peak, rainfall is s more stable and thus more suitable for agriculture. 

Trend analysis further revealed that monthly rainfall increased over the 

31 years, with an annual rise of 5.59 mm or 55.9 mm per decade (Figure 

2). This finding contrasts with Atomsa & Zhou (2022), who reported a 

decreasing trend in monthly rainfall over the past 30 to 33 years. In 

contrast, key informants and focus group discussions (FGDs) indicated 

that rainfall has been decreasing in recent decades, except during the 

Kiremt season. They recalled that the area was once covered with 

dense, evergreen forests, experiencing abundant rainfall, frequent cloud 

cover, and flowing streams. Even during the dry bega season, there was 

enough rainfall to support livestock with grass and water. However, 

participants linked the recent decline in rainfall to deforestation driven 

by population growth and agricultural expansion, as well as moral 

decline, which they believe has led to reduced crop yields, livestock 

losses, increased disease, and displacement. 

Table 1. Descriptive summary of monthly rainfall analysis  

Variables Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Minimum 0.8 1.2 11.4 40.7 52.1 151.4 133.4 131.9 159.3 33.7 15.2 0.3 
Maximum 170.6 103.6 205.3 333.3 686.1 543.4 498.4 587.8 417.3 394.5 171.1 140.9 

Mean 31.3 36.7 84.0 174.0 306.0 347.0 305.2 291.8 271.6 189.4 81.8 35.9 

SD 34.1 26.3 44.3 74.6 135.6 104.3 102.7 94.6 79.2 82.1 43.1 30.5 
CV 109.1 71.7 52.7 42.9 44.3 30.0 33.6 32.4 29.2 43.4 52.7 84.9 

Figure 2:  Bedele Monthly Rainfall (1992-2022) 

Seasonal and Annual Rainfall Analysis  

The study (Table 2) found the mean seasonal rainfall to be 600.7 mm 

(Belg), 1215.7 mm (Kremt), and 338.4 mm (Bega), with Kremt receiving 

the highest rainfall, consistent with Daba (2018). Coefficient of variation 

(CV) analysis showed higher rainfall variability in Belg (30.6%) and Bega 

(32.4%) compared to Kremt (25.8%), making Kremt more reliable. Belg 

and Bega rainfall showed increasing trends from 1992 to 2022, with Belg 

rising by 4.77 mm/year and Bega by 1.38 mm/year, aligning with 

Arragaw and Woldeamlak (2017), but contrasting with Orke et al. 

(2021), who noted a decline in Belg rainfall. Kremt rainfall, important for 

agriculture, increased by 8.7mm/year, supporting Arragaw and 

Woldeamlak’s (2017) findings of a slight positive trend. The main rainy 

season (June to September) is crucial for agriculture, supporting both 

short and long-cycle crops. The area’s annual rainfall ranged from 

1073.5 mm to 2980.7 mm, with a mean of 2154.7 mm, increasing by 

14.85 mm/year. The CV for annual rainfall (24.5%) was lower than 

Belg’s, indicating moderate variability, contradicting Fenech et al. (2018) 

but aligning with Shawul and Chakma (2020). 

Table 2: Descriptive summary of seasonal and Annual Rainfall of the 

Study Area 

 Annual Belg kremt  Bega 

Minimum 1073.5 192.8 681.2 122.2 
Maximum 2980.7 1010.3 1725.3 613.3 
Mean 2154.7 600.7 1215.7 338.4 
S D 527.1 183.5 314.0 109.7 

Cv 24.5 30.6 25.8 32.4 

 
Figure 3:  Bedele Annual Total Rainfall (1992-2022) 

y = 5.59x + 143.23
R² = 0.0274

0
50

100
150
200
250
300
350
400

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecR
a
in

fa
ll

 i
n

m

Month

Bedele Monthly Rainfall 

monthly mean  linear-monthly mean  rainfall

y = 14.853x + 1917.1
R² = 0.0656

0

1000

2000

3000

4000

1992 1997 2002 2007 2012 2017 2022R
a
in

fa
ll 

in
 m

m

Year

Bedele Annual Total Rainfall

Annual total Rainfall Linear (Annual total Rainfall)



Kalifa et al                                                                                 J. Agric. Food. Nat. Res., Jan-Apr 2025, 3(1):18-30 

22 
 

 
Figure 4:  Bedele  Belg Total Rainfall (1992-2022) 

Figure 5: Bedele Kremt Total Rainfall (1992-2022) 

 

 
Figure 6:  Bedele Bega Rainfall (1992-2022) 

 

Analysis of Seasonal and Annual Start of rain, End of Rain, 

Length of Growing periods, and Rain days  

Table 3 summarizes a 31-year analysis of seasonal rainfall in the 

Bedelle district. The earliest onset was April 1 (DOY 92) in 2002, 2017, 

and 2019; the latest was May 31 (DOY 152) in 2003, with a mean onset 

of April 26 (DOY 117). This contrasts with Mekonnen (2018), who 

reported a June onset for western Oromia. Onset variability was low (CV 

= 13.5%), and 93.3% of seasons began between April 1 and April 27. 

Seasonal rainfall ended as early as September 18 (DOY 262) in 2002 

and as late as December 22 (DOY 357) in 2015, with a mean end date 

of November 8 (DOY 314). End date variability was also low (CV = 6%), 

differing from Mekonnen’s mid-October cessation. Most seasons 

(63.3%) ended between November 1 and 24. The growing period 

ranged from 139 to 255 days, averaging 209.9 days (CV = 12%), 

indicating reliable length. Annual rainfall days ranged from 213 to 290, 

with a mean of 257 days (CV = 7.4%), showing consistency. Rain day 

variability was low for Kiremt (CV = 2.2%) and moderate for Belg (CV = 

14.8%). 

Table 3: Descriptive summary of Seasonal and Annual Start of rain, End 

of Rain, Length of Growing Periods, and Rain Days  

Variables  Min Max Mean Sd Cv 

SOS 92.0 152.0 104.0 14.0 13.5 

EOS 262.0 357.0 314. 18.9 6.0 

LGP 139.0 255.0 209.9 25.2 12.0 

ANRD 213 290 257 19 7.4 

KRD 113 122 120 3 2.2 

BRD 34 81 55 12 20.9 

BLRD 54 103 82 12 14.8 
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SOS=Start of Season EOS=End of Season, LGP-=Length of Growing 

Periods, ANRD=Annual Rain Day, KRD=Kremt Rain Day, BRD=Bega 

Rain Day, BLRD=Belg Rain Day 

    
Figure 7: Bedele Start of Rainfall (1992-2022) 

 
  Figure 8:  Bedele End of seasonal Rainfall (1992-2022) 

 
 Figure 9:  Bedele Length of Growing periods (1992-2022) 

 
Figure 10: Bedele Annual Rain day (1992-2022) 

 
 Figure 11:  Bedele Belg Rain day (1992-2022) 

 
Figure 12:  Bedele  Kremt  Rain day (1992-2022) 

Figure 13: Bedele Bega Rain day (1992-2022) 

Annual standard rainfall anomaly  

According to Agnew and Chappel (1999), the standardized rainfall 

anomaly in the study area ranged from extremely wet to severe drought. 

In 2016, it was classified as very wet (Z = +1.6), while in 2004 

experienced severe drought (Z = -1.8) (Figure 14). 

Figure 14 shows extremely wet years in 2016 and 2020, and very wet 

conditions in 1996, 2017, and 2021. Moderately wet conditions were 

recorded in 19 years, including 1992–1995, 1997–2000, 2006–2010, 

2013–2015, 2018, 2019, and 2022, representing 66.7% of the study 

period. Moderate droughts occurred in 2001, 2002, and 2005, while 

2003 and 2004 experienced severe drought. Overall, the annual rainfall 

anomaly increased by 0.028 mm per year, aligning with Gemachu and 

Melkamu (2022), who reported a 0.008 mm increase from 1997 to 2017 

in Bedelle. 
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Figure 14: Bedele Annual Standard Rainfall Anomaly (SRA) (1992-

2022)  

Analysis of monthly minimum temperature  

The analysis of 31 years of minimum temperature data (Table 4) reveals 

that monthly minimum temperatures in the study area range from a low 

of 8°C in December to a high of 14.7°C in May. The variability in these 

monthly minimum temperatures is low, with coefficients of variation 

ranging from 1.8% in August to 10.5% in December, indicating that 

minimum temperatures are generally reliable. However, there has been 

a decrease of 0.14°C per year, equating to a decline of 1.4°C per decade 

(Figure 15) 

Table 4: Descriptive Summary of Monthly Minimum Temperature 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Minimum 8.3 10.5 12.3 12.9 13.0 12.4 11.8 12.2 11.9 10.5 9.1 8.0 
Maximum 12.7 13.7 14.3 14.6 14.7 13.7 13.2 13.1 13.2 12.9 12.6 12.0 
Mean 11.0 12.3 13.3 13.7 13.8 13.2 12.5 12.6 12.7 12.0 10.6 10.3 
Sd 0.9 0.7 0.5 0.4 0.4 0.3 0.3 0.2 0.4 0.6 0.8 1.1 

Cv 8.3 5.6 3.8 2.9 2.7 2.4 2.6 1.8 2.9 5.0 7.8 10.5 

 

 
     Figure 15:  Bedele Monthly Minimum Temperature (1992-2022) 

Analysis of seasonal and annual Minimum temperature  

The annual minimum temperature in the study area ranged from 11.8 °C 

to 12.8 °C, with a mean of 12.3 °C and low variability (SD = 0.3 °C, CV 

= 2.1%). Seasonally, minimum temperatures averaged 13.2 °C in Belg 

(12.6–14.1 °C), 12.7 °C in Kiremt (12.2–13.3 °C), and 11 °C in Bega 

(9.7–12.2 °C), all showing low variability. From 1992 to 2022, minimum 

temperatures showed an increasing trend, rising annually by 0.0093 °C 

(or 0.093 °C per decade). Seasonal increases per year were 0.0185 °C 

(Kiremt), 0.0052 °C (Belg), and 0.0043 °C (Bega). These trends are 

consistent with Tolosa et al. (2023), who reported significant warming of 

0.12 to 0.54 °C per decade in annual temperature extremes. 

  Table 5: Descriptive summary of Seasonal and Annual Minimum 

Temperature 

 Annual Belg Kremt  Bega 

Min 11.8 12.6 12.2 9.7 
Max 12.8 14.1 13.3 12.2 
Mean 12.3 13.2 12.7 11.0 

S D 0.3 0.4 0.3 0.5 
Cv 2.1 2.9 2.1 4.9 

 
Figure 16: Bedele Annual Minimum Temperature (1992-2022)
  

  
Figure 17: Bedele Belg Minimum Temperature (1992-2022) 

y = 0.0282x - 0.4508
R² = 0.0656

-4.0

-2.0

0.0

2.0

1992 1997 2002 2007 2012 2017 2022A
n

o
m

al
 R

ai
n

fa
ll 

 

Years 

Annual  Anomal Rainfall

Annual  Anomal Rainfall

y = -0.1411x + 13.24

R² = 0.1959

0

20

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T
em

p
er

at
u
re

 i
n

0
C

Month

Bedele  monthly Minimum Temperature

Monthly mean Linear (Monthly mean )

y = 0.0093x + 12.173

R² = 0.1044

11.0

12.0

13.0

1992 1997 2002 2007 2012 2017 2022

T
em

p
er

at
u
re

 i
n
 °

C
 

Year 

Bedele Annual minimum Temperature 

  Annual Tmin Linear (  Annual Tmin )

y = 0.0052x + 13.16

R² = 0.015

10.0

12.0

14.0

16.0

1992 1997 2002 2007 2012 2017 2022T
em

p
er

at
u
re

 i
n
 o

C

Year

Bedele  Belg Minimum Temperature

Belg Tmin



Kalifa et al                                                                                 J. Agric. Food. Nat. Res., Jan-Apr 2025, 3(1):18-30 

25 
 

     
 Figure 18: Bedele Kremt Minimum Temperature 

     
  Figure 19: Bedele Bega Minimum Temperature 

Analysis of monthly maximum temperature in the study area 

Table 6 summarizes the maximum temperature data, showing that the 

lowest recorded maximum temperature was 18.8°C in July, while the 

highest reached 29°C in March. The monthly mean maximum 

temperatures ranged from 19.8°C in July to 25.9°C in March. Similar to 

the minimum temperatures, the variability in monthly maximum 

temperatures is relatively low, with coefficients of variation (CV) ranging 

from 1.7% in August and September to 6.8% in May (Table 14). Despite 

this low variability, there is a noticeable decreasing trend in monthly 

maximum temperatures, with an average decline of 0.3996°C (Figure 

20).     

Table 6: Descriptive Summary of Monthly Maximum Temperature 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Minimum 21.4 22.6 23.7 21.7 20.7 19.6 18.8 19.4 19.7 20.0 20.2 20.8 

Maximum 26.8 28.9 29.0 27.7 28.6 21.5 20.5 20.8 21.1 22.0 23.3 24.7 

Mean 23.2 25.1 25.9 24.2 22.3 20.4 19.8 20.1 20.4 20.8 21.1 21.7 

Sd 1.4 1.7 1.3 1.3 1.5 0.5 0.4 0.3 0.4 0.4 0.5 0.9 

Cv 5.9 6.6 4.8 5.5 6.8 2.5 2.2 1.7 1.7 2.0 2.6 4.1 

 

 
 Figure 20: Bedelle Monthly Maximum Temperature  

Analysis of seasonal and annual maximum Temperature 

The study area’s annual maximum temperature ranges from 21.1 °C to 

24.0 °C, with a mean of 22.1 °C, SD of 0.6 °C, and CV of 2.8%, indicating 

moderate variability (Table 7). In the Belg season, temperatures range 

from 22.6 °C to 27.7 °C (mean: 24.4 °C), with low fluctuation (SD = 

1.1 °C, CV = 4.5%), suggesting a pleasant, stable climate. During 

Kiremt, maximum temperatures vary from 19.6 °C to 20.7 °C (mean: 

20.2 °C), with low variability (SD = 0.3 °C, CV = 1.6%). For Bega, the 

maximum temperature ranges between 20.8 °C and 23.8 °C (mean: 

21.7 °C), with moderate fluctuation (SD = 0.7 °C, CV = 3.0%). These 

seasonal insights are important for climate monitoring and planning. 

 

Table 7: Descriptive summary of seasonal and annual Maximum 

Temperature  

Variable Annual Belg Kremt  Bega 

Min 21.1 22.6 19.6 20.8 
Max 24.0 27.7 20.7 23.8 
Mean 22.1 24.4 20.2 21.7 
S D 0.6 1.1 0.3 0.7 
CV 2.8 4.5 1.6 3.0 
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Figure 21:  Bedele Annual Maximum Temperature (1992-2022) 

 
Figure 22: Bedele Belg Maximum Temperature 

 

Figure 23:  Bedele Kremt Maximum Temperature (1992-2022)  
 

 
Figure 24: Bedele Bega maximum Temperature (1992-2022) 

Effects of Climate Variability on Maize Yields 

Analysis of correlation  

The research examined the correlations between environmental factors 

and maize yield, revealing significant relationships (Table 8). The onset 

of the growing season (SOS) showed a weak negative correlation of -

0.143 with maize yield, indicating that delayed starts can reduce yields. 

Similarly, the end-of-season (EOS) had a weak negative correlation of -

0.164, suggesting that an early end may adversely affect yields. The 

length of the growing period (LGP) also exhibited a weak negative 

correlation of -0.213, implying that shorter growing periods are linked to 

decreased yields. 

Temperature-related variables were notably impactful; the kremt mean 

maximum temperature (KTmax) had a strong positive correlation of 

0.609 with maize yield, indicating that higher maximum temperatures 

enhance yields. Likewise, the kremt mean minimum temperature 

(KTmin) correlated positively at 0.554, suggesting that higher minimum 

temperatures benefit maize production. Conversely, Kremt rainfall (KRf) 

displayed a negative correlation of -0.661 with maize yield, indicating 

that increased rainfall may negatively affect production.  
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Table 8: Summary of Pearson Correlation 

Pearson Correlation 

 Yield SOS EOS LGP KTmax KTmin KRf 

Yield 1 -0.143 -0.164 -0.213 0.609* 0.554* -0.661** 
SOS -0.0143 1 -0.244 -0.777** 0.320 -0.223 -0.280 
EOS -0.164 -0.244 1 0.720** -0.195 0.438 0.537* 
LGP -0.213 -0.777** 0.720** 1 -0.466 .222 0.605* 
KTmax 0.609* 0.320 -0.195 -0.466 1 0.220 -0.578* 
KTmin 0.554* -0.223 0.438 0.222 0.220 1 0.027 

KRf -0.661** -0.280 0.537* 0.605* -0.578* 0.027 1 

 

Regression analysis  

This study used multiple regression analysis to examine the relationship 

between maize yield and climatic factors: Start of Season (SOS), End 

of Season (EOS), Length of Growing Period (LGP), Kiremt mean 

maximum (KTmax), and minimum temperatures (KTmin), and Kiremt 

rainfall (KRf) (Table 9). The regression model: Yield = −261.45 − 

0.28SOS − 0.064EOS − 0.126LGP + 6.042KTmax + 17.384KTmin − 

0.014KRf showed both the magnitude and direction of each variable’s 

influence. SOS, EOS, and LGP had statistically insignificant negative 

effects on yield, with decreases of 0.280, 0.064, and 0.126 quintals/ha 

per unit increase, respectively. In contrast, KTmax and KTmin 

significantly increased yield by 6.042 and 17.384 quintals/ha, indicating 

a strong positive impact of temperature. However, KRf had a significant 

negative effect, reducing yield by 0.014 quintals/ha per mm increase, 

highlighting the adverse impact of excess rainfall. 

Table 9: Coefficients of regression analyses for onset, kremt rain total and kremt average temperature at Bedele   

Coefficientsa 

Model 
Unstandardized Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 (Constant) -261.450 127.818 - -2.045 0.075 

SOS -0.280 0.192 -0.571 -1.456 0.183 
EOS -0.064 0.162 0.149 0.392 0.705 
LGP -0.126 0.166 -0.441 -0.758 0.470 
KTmax 6.042 4.838 0.224 1.249 0.025 
KTmin 17.384 7.604 0.424 2.286 0.052 
KRf -0.014 0.005 -0.516 -2.635 0.030 

a. Dependent Variable: Yield 

The coefficient of determination (R² = 0.864) indicates that 86.4% of 

maize yield variation over the past 15 years is explained by climatic 

factors—SOS, EOS, LGP, Kiremt mean maximum and minimum 

temperatures and rainfall. The remaining 13.6% is due to non-climatic 

factors like soil properties, management, and inputs. The multiple 

correlation coefficient (R = 0.929) shows a strong positive linear 

relationship between these variables and maize yield (Table 10). 

Table 10: Regression values for predictors 

Model Summary 

Model R R 
Square 

Adjusted R 
Square 

Std. Error of 
the Estimate 

1 0.929a 0.86 0.762 4.1378 

a. Predictors: (Constant), SOS EOS, LGP, KTmax, KTmin, KRf 

The study found that maize yield had weak negative correlations with 

the start of season (SOS: -0.143), end of season (EOS: -0.164), and 

length of growing period (LGP: -0.213), suggesting delayed starts, early 

ends, or shorter seasons may reduce yields. In contrast, Kiremt mean 

maximum (KTmax: 0.609) and minimum temperatures (KTmin: 0.554) 

showed strong positive correlations, indicating that warmer 

temperatures enhance yield. However, Kiremt rainfall (KRf: -0.661) had 

a strong negative correlation, implying that excessive rainfall negatively 

affects maize production. 

Climate variability adaptation strategies of the study area 

Within the study area, the impact of adaptation strategies to climate 

variability has manifested across diverse demographic and socio-

economic characteristics within the surveyed households. These 

pertinent factors are encapsulated in the following Table 11.  

Table 11: Summary of demographic and socio-economic that affect 

adaptation strategies of climate variability in the study area  

Variable Mean 
Std. 
Dev. Min Max 

Age 40.1 13.7 12.0 72.0 
Education level of 
HH 4.0 4.0 0.0 12.0 

Farm experiences 23.8 13.7 2.0 60.0 
Total livestock 2.0 1.4 0.0 5.0 

Farm income  7443.1 7285.3 1230.0 59650.0 

Land size  5.3 3.9 0.0 10.1 
Frequency of 
extension contact 

4.8 6.0 0.0 21.0 

The study analyzed demographic and socio-economic factors 

influencing climate variability adaptation strategies. The average age of 

participants was 40.1 years (SD = 13.7, range: 12–72), with household 

heads having a mean education of 4.0 years (SD = 4.0, range: 0–12). 

The average farming experience was 23.8 years (SD = 13.7, range: 2–

60), and livestock ownership averaged 2.0 units (SD = 1.4, range: 0–5). 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

SOS=Season of start rain,EOS=End of rain season ,LGP=length of growing  periods, KTmax= Kiremt maximum Temperature, KTmin = Kiremt 

Minimum Temperature, KRf= kiremt Rainfall  
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Farm income showed wide variation, averaging 7,443.1 (SD = 7,285.3, 

range: 1,230–59,650), while landholding averaged 5.3 hectares (SD = 

3.9, range: 0–20.1). Extension contact frequency averaged 4.8 times 

(SD = 6.0, range: 0–21), reflecting varied access to agricultural advisory 

services.                       

  Table 12: Summary of Institutional characteristics of the surveyed 

Households   

Variables Frequency Percent 
access to credit 75 51.72 

not access to credit 70 48.28 
trained to climate change 95 65.5 
not trained to climate change 50 34.5 

This study examines adaptation strategies to climate variability, 

highlighting factors influencing these strategies. Table 12 summarizes 

key findings: 75 households (51.72%) reported access to credit, while 

70 (48.28%) did not. Additionally, 95 households (65.5%) received 

climate change training, compared to 50 households (34.48%) that did 

not. These factors provide valuable insights into climate adaptation 

strategies in the study area. 

Adaptation strategies employed by sampled households 

This research explores adaptation strategies to climate change, 

highlighting the various measures employed by farmers to mitigate its 

effects. Survey data from 145 households shows that common 

strategies include adopting improved crop varieties, adjusting planting 

dates, afforestation, crop diversification, and soil-water conservation 

(Table 13). Notably, many farmers use a combination of these 

strategies. Specifically, 96 households (66.21%) use improved crop 

varieties, 106 (73.1%) adjust planting dates, 109 (75.17%) practice tree 

planting, 81 (55.86%) diversify crops, 45 (31.03%) employ irrigation, and 

116 (80%) utilize soil-water conservation.                 

Table 13: Summary of Adaptation strategies employed by sampled 

households  

Variables Responses Frequency Percentage 

Using improved 
crop variety 

Yes 96 66.21 

Adjusting the 
plant date 

Yes 106 73.10 

plant trees Yes 109 75.17 

crop 
diversification 

Yes 81 55.86 

Applying irrigation Yes 45 31.03 
Soil-water 
conservation 

Yes 116 80.00 

Determinants of households’ choice of climate variability 

adaptation strategies 

This research examines adaptation strategies to climate change, 

revealing that farmers in the study area implement various measures to 

mitigate its effects. A survey of 145 households shows that these 

strategies include adopting improved crop varieties, adjusting planting 

dates, afforestation, crop diversification, and soil water conservation 

(Table 14). Many farmers employ a combination of these strategies, 

indicating a multifaceted approach to adaptation. The findings reveal 

that 96 households (66.21%) use improved crop varieties, 106 

households (73.1%) adjust planting dates and 109 households (75.17%) 

practice tree planting. Crop diversification is adopted by 81 households 

(55.86%), while 45 households (31.03%) use irrigation techniques, and 

soil-water conservation is implemented by 116 households (80%). 

The multivariate probit model results indicate the likelihood of 

households adopting various adaptation strategies: using crop varieties 

(66.2%), adjusting planting dates (73.1%), planting trees (75.2%), crop 

diversification (56.0%), applying irrigation (31.0%), and soil water 

conservation (SWC) (80.0%) (Table 13). Among these, the application 

of irrigation had the lowest likelihood at 31.0%, compared to other 

strategies. These findings suggest that different demographic and 

socioeconomic characteristics influence households' choices of 

adaptation strategies to climate variability. Out of ten identified factors 

affecting these decisions, three significantly influenced the use of crop 

varieties (education, farm income, extension contact), three affected 

planting date adjustments (total land size, extension contact, climate 

training), three influenced tree planting (total land size, education, 

access to credit), three impacted crop diversification (education, farm 

experience, extension contact), and three affected irrigation practices 

(education, extension contact, access to credit). Additionally, five factors 

significantly influenced soil water conservation: age, total land size, 

education, farm experience, and climate-related training (Table 14). 

Table 14: Multivariate probit results for households’ climate variability adaptation choice 

 Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE 

AGHH 0.007 0.017 0.017 0.018 -0.011 0.017 0.004 0.015 0.013 0.015 0.059*** 0.018 

SexHH 0.424 0.287 0.023 0.305 0.363 0.289 -0.114 0.275 0.420 0.317 -0.217 0.370 

EDUHH 0.078** 0.039 0.036 0.038 0.066* 0.038 0.064* 0.033 0.064* 0.034 0.100** 0.044 

FARMEXP 0.002 0.017 -0.025 0.018 0.017 0.017 0.025* 0.015 -0.018 0.015 -0.05*** 0.018 

TLHOLD 0.130 0.105 0.144 0.104 -0.150 0.098 0.048 0.094 0.141 0.097 -0.156 0.112 

FARMINC 0.000*** 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

LSHOLD -0.031 0.031 0.068* 0.038 0.069* 0.035 0.007 0.031 -0.036 0.035 0.090** 0.043 

EXTCONT 0.043* 0.025 0.049* 0.025 0.015 0.022 0.003 0.021 0.042** 0.021 0.001 0.025 

ACCRDT 0.312 0.250 -0.338 0.257 -0.49* 0.254 -0.018 0.234 0.507** 0.250 -0.322 0.285 

CCRTR 0.368 0.258 0.579** 0.262 0.215 0.276 0.454* 0.249 -0.071 0.277 0.903*** 0.297 

_cons -1.61*** 0.584 -0.402 0.534 0.236 0.502 -

1.3*** 

0.496 -1.598*** 0.519 -0.722* 0.590 

Predicted         0.662                            0.731                             0.752                      0.560                      0.310                              0. 80 

probability  ***, ** and * significant at 1%, 5% and 10% probability level respectively. 

Conclusion and Recommendation 

Conclusion 
Overall, the study area experienced moderately variable monthly 

rainfall, indicating consistent precipitation critical for crop production. 

However, the Bega and Belg seasons were unreliable due to high 

rainfall dispersion, posing risks for rain-fed agriculture and planting 

dates. Kremt rainfall was reliable during the growing season, supporting 

crop production. The onset of the rainy season in April encourages land 

preparation for agriculture, while the end date in November aligns with 
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harvesting times for some crops. The high number of rainy days 

corresponds with total annual rainfall and overall wetness in the area. 

The low variability in temperature suggests consistent climatic 

conditions; however, increased temperatures positively impact maize 

yields while rainfall events negatively affect them. Demographic and 

socio-economic factors significantly influence the choice of adaptation 

strategies to climate variability. Households in the study area 

predominantly practice soil water conservation as an adaptation 

measure, reflecting its emphasis in national policies to address climate 

variability effectively. 

Recommendations 

 

Based on the findings of this research, several recommendations are 

proposed to guide farmers, policymakers, and other stakeholders. 

Farmers are advised to prioritize the Kremt (main rainy season) rainfall 

for rain-fed agricultural activities, as it exhibits lower variability compared 

to other seasons. Agricultural policies should be aligned to support and 

enhance this seasonal focus. Although the region benefits from 

substantial annual and Kremt rainfall, the risk of floods and surface 

runoff remains significant; thus, establishing robust early warning 

systems for flood events is essential. It is recommended that farmers 

initiate planting between April 1 and April 27, capitalizing on the early 

onset of rainfall, and adjust their agricultural calendars accordingly, 

given that the rainy season typically concludes in November. Crop 

selection should be aligned with this seasonal pattern to ensure timely 

harvests. Furthermore, maintaining consistent soil moisture is critical, as 

most years exhibit moderate wetness, necessitating practices that 

conserve and enhance soil water retention. Finally, policymakers should 

design climate adaptation strategies that prioritize key socioeconomic 

factors such as educational attainment, farming experience, landholding 

size, household income, access to credit, and participation in climate-

related training programs, to effectively mitigate the adverse impacts of 

climate variability. 
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