

DOI: <https://doi.org/10.20372/afnr.v3i3.1904>

ISSN: 2520-7687 (Print) and 3005-7515 (Online)

Journal of Agriculture, Food and Natural Resources**J. Agric. Food Nat. Resour. Sep-Dec 2025, 3(3):43-54****Journal Home page:** <https://journals.wgu.edu.et>**Review Article**

Important Water Sources and Quality Management Techniques for Crop Disease Management: A Review

Suresh Aluvihara^{1*}, Abhijeet Ghatak², Ferial Pestano-Gupta³, Husam Hasan Abdulaali⁴

¹Department of Chemical and Process Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka

²Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India

³Division of Natural Sciences, Berbice Campus, University of Guyana, Tain, Guyana

⁴Department of Soil Science and Water Resources, University of Basrah, Basrah, 61004, Iraq

Abstract

Water is an indispensable resource for agriculture, fundamental to global food security. However, its quality and management are increasingly recognized as critical determinants of crop health, directly influencing the incidence and severity of plant diseases. This comprehensive review synthesizes current knowledge regarding the interplay between various agricultural water resources, crucial water quality parameters, and advanced management techniques for effective crop disease prevention and control. The paper systematically examines major water sources: surface water, groundwater, reclaimed wastewater, rainwater, and desalinated water, highlighting their respective advantages, disadvantages, and specific pathogen risks. It examines the physical, chemical, and biological water quality parameters that significantly influence plant susceptibility and pathogen survival and dissemination. Furthermore, the review provides an in-depth analysis of diverse water quality management strategies, including source water protection, advanced on-farm treatment technologies (physical, chemical, biological), and optimized irrigation system designs, emphasizing their roles within an Integrated Pest and Disease Management framework. The pervasive challenges associated with water quality and its impact on crop health, such as emerging pathogens, regulatory gaps, and the effects of climate change, are discussed. Finally, the article explores the challenges, future directions in research and technology, advocating for rapid pathogen detection, precision water management, novel treatment solutions, and integrated policy approaches to enhance agricultural resilience and secure food production in a changing world.

Copyright@2024 AFNR Journal Wollega University. All Rights Reserved

Article Information

Article History:

Received: 10-12- 2025

Revised: 27-12-2025

Accepted: 28-12-2025

Keywords:

Crop disease

Food security

Irrigation

Water management

Waterborne pathogens

*Corresponding Author:

E-mail:

sureshaluvihare@gmail.com

INTRODUCTION

Agriculture stands as the cornerstone of human civilization, providing the sustenance necessary for a burgeoning global population projected to reach nearly 10 billion by 2050 (Crowe *et al.*, 2001). The productivity of agricultural systems is intricately linked to the availability and judicious management of natural resources, among which water holds paramount importance. Irrigation accounts for approximately 70% of global freshwater withdrawals, underscoring its indispensable role in enhancing crop yields and ensuring food security, particularly in arid and semi-arid regions (Kumar *et al.*, 2009). However, the escalating challenges of climate change, water scarcity, environmental pollution, and the persistent threat of crop diseases are placing unprecedented pressure on agricultural sustainability (Fry, 2008).

Crop diseases, caused by a diverse array of pathogens including fungi, bacteria, viruses, and oomycetes, inflict significant economic losses globally, estimated to exceed 10-16% of crop production annually, with

greater impacts in developing countries (Fisher *et al.*, 2012). These losses not only undermine farmers' livelihoods but also threaten regional and global food security, exacerbating malnutrition and poverty (Reuveni, 2014). While traditional disease management strategies often focus on host resistance, chemical control, and cultural practices, the profound connection between water and crop health is increasingly gaining recognition as a critical, yet often underappreciated, factor in disease epidemiology and management (Hong and Moorman, 2005; Paula *et al.*, 2019).

Water interacts with crop health in multifaceted ways. It is the medium for plant growth and nutrient uptake, but it can also serve as a direct vector for numerous plant pathogens, facilitating their dispersal from contaminated sources to susceptible hosts (Hong and Moorman, 2005). Moreover, the physical and chemical properties of irrigation water can significantly influence plant physiology, altering host susceptibility to disease, modifying the soil microbiome, and even impacting the efficacy of disease control agents (Mao *et al.*, 2017). Contaminated irrigation

water can introduce pathogens directly to roots, leaves, and fruits, leading to localized infections or systemic spread within fields. Furthermore, water stress, whether due to scarcity or excess, can weaken plant defenses, making them more vulnerable to opportunistic pathogens (Pandya *et al.*, 2011).

The management of water resources and the maintenance of optimal water quality are thus not merely issues of supply and efficiency but are integral components of a holistic strategy for crop disease management (Harden *et al.*, 2011). As freshwater resources become increasingly strained, alternative water sources such as reclaimed wastewater and saline groundwater are being explored, which introduces new complexities and potential pathogen risks (Kessens *et al.*, 2017). This necessitates a re-evaluation of current practices and the development of innovative solutions to safeguard crop health.

METHODOLOGY

The methodological framework for a systematic review of important water sources and quality-management techniques in the context of crop disease mitigation must be anchored in a rigorously defined protocol that adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Matthew *et al.*, 2021). The initial phase involves delineating a clear research question employing the PICOS (Population, Intervention, Comparison, Outcomes, Study design) format: (P) agricultural systems across temperate, tropical, and arid regions, water-source characterization (e.g., surface water, groundwater, rain-fed, reclaimed, and drip-irrigated supplies) and associated quality-management interventions (e.g., filtration, chlorination, UV treatment, biological control agents, and real-time sensor-based monitoring), (C) conventional water-use practices lacking explicit disease-prevention measures; (O) incidence and severity of fungal, bacterial, viral, and nematode pathogens (S) experimental, observational, and modeling studies published in peer-reviewed journals, conference proceedings, and technical reports. A comprehensive literature search will be conducted across multidisciplinary databases such as Web of Science, Scopus, and the IEEE Xplore digital library, supplemented by gray-literature repositories (e.g., USDA AGRICOLA, FAO publications) and regional agronomic bulletins. Boolean operators and controlled vocabularies (e.g., MeSH, AGROVOC) were employed to capture synonyms and related concepts (e.g., "irrigation water quality", "pathogen suppressive water", "crop health", "hydro-sanitation"). To ensure reproducibility, search strings were archived in supplemental material, and the search period will span from 1980 to the present, reflecting the evolution of water-treatment technologies and emerging pathogen threats. This systematic approach ensures a robust, unbiased corpus from which evidence synthesis can proceed.

Subsequent data extraction utilizes a standardized template capturing bibliographic details, geographical context, crop species, water source typology, quality-management technique specifications (e.g., filtration pore size, disinfectant dosage, sensor calibration), pathogen identification methods, disease incidence/prevalence rates, and reported effect sizes (e.g., relative risk reduction, odds ratios). Heterogeneity across studies was examined through subgroup analyses stratified by water source (e.g., groundwater vs. reclaimed), crop type (cereal vs. horticultural), and management technique (physical vs. chemical vs. biological). Random-effects meta-analysis models were employed when sufficient homogeneity exists; otherwise, a narrative synthesis employing thematic coding elucidate patterns such as the efficacy of UV-based disinfection in reducing *Phytophthora* spp. in irrigation canals or the role of biofiltration in suppressing *Xanthomonas* spp. in reclaimed water. Publication bias was investigated using funnel-plot asymmetry tests and Egger's regression (Matthew *et al.*,

2021; Lin and Chu, 2018). Finally, the review culminated in evidence-based recommendations for integrative water-quality management strategies, highlighting gaps in current knowledge (e.g., long-term impacts of nanofiltration on soil microbiome dynamics) and proposing a research agenda that aligns water stewardship with sustainable disease-resilient agriculture.

This review article aims to provide a comprehensive synthesis of the important water resources utilized in agriculture and the critical water quality management techniques necessary for effective crop disease management. It will systematically explore the intricate nexus between water, agriculture, and crop health, the disease implications associated with various agricultural water resources, the specific water quality parameters that impact crop disease, a detailed account of current and emerging water quality management techniques for disease prevention, and control and the challenges and future directions in this critical field. By consolidating existing knowledge and identifying key research gaps, this review seeks to aware researchers, policymakers, and agricultural practitioners about sustainable water management strategies to enhance crop health and bolster global food security.

LITERATURE REVIEW

The Nexus of Water, Agriculture, and Crop Health

The intertwined relationship between water, agriculture, and crop health is fundamental to understanding sustainable food production. Water acts as a lifeline for crops, a medium for nutrient transport, and a critical determinant of environmental conditions that can either foster or inhibit disease development (Hong and Moorman, 2005).

Water as a Fundamental Resource for Crop Production

Globally, agriculture is the largest consumer of freshwater, with irrigation systems enabling the cultivation of crops in regions where rainfall is insufficient or unreliable. Irrigation has been instrumental in increasing agricultural productivity, expanding arable land, and stabilizing yields, particularly for staple crops like rice, wheat, and maize. Water availability directly influences plant growth processes, including photosynthesis, nutrient uptake, and transpiration. Different water sources are tapped for agricultural use, each with unique characteristics and implications for sustainability and crop health (Chen *et al.*, 2013).

Surface water, derived from rivers, lakes, and canals, is a primary source for large-scale irrigation systems due to its relatively easy accessibility and often high volume (Pandya *et al.*, 2011). Groundwater, accessed through wells and boreholes, provides a more consistent supply and is often of higher initial quality, especially in terms of microbial load, compared to surface water (Foster and Chilton, 2004). However, its extraction raises concerns about aquifer depletion. Reclaimed or recycled wastewater, once considered only for non-potable uses, is increasingly being explored for irrigation as a sustainable solution to freshwater scarcity, particularly in urbanizing agricultural areas (Qadir *et al.*, 2010). Rainwater harvesting offers a localized and often high-quality source, though its availability is intermittent and storage requirements can be substantial. Desalinated water, while expensive and energy-intensive, provides a virtually unlimited supply of high-purity water, primarily used in arid coastal regions for high-value crops (Ghaffour *et al.*, 2009).

The choice of water resource directly impacts the irrigation method employed, which in turn influences water use efficiency and disease dynamics. Traditional methods like furrow and flood irrigation can be less efficient and may contribute to waterlogging and pathogen spread. More advanced techniques, such as drip and sprinkler irrigation, enhance efficiency and can alter the microclimate around plants, potentially influencing disease incidence (Lamm and Trooien, 2003).

Crop Diseases and Global Threats to Food Security

Crop diseases represent a relentless threat to agricultural productivity and global food security. A wide array of plant pathogens, including fungi, oomycetes, bacteria, viruses, and nematodes, cause diseases that manifest as reduced yields, impaired quality, and sometimes complete crop failure (Fisher et al., 2012). For instance, the fungal blast disease of rice (caused by *Magnaporthe oryzae*) can destroy up to 30% of global rice production, while late blight of potato (*Phytophthora infestans*) remains a significant threat to potato and tomato crops worldwide (Dean et al., 2005; Fry, 2008). Bacterial diseases like citrus canker (*Xanthomonas citri*) devastate fruit quality, and viral diseases such as tomato yellow leaf curl virus cause severe stunting and yield losses (Graham et al., 2004; Czosnek and Laterrot, 1997).

The economic impact of these diseases is staggering, leading to billions of dollars in losses annually and increasing the reliance on chemical pesticides, which in turn raise environmental and human health concerns (Baldry, 1983). Beyond direct yield losses, diseases can affect the nutritional quality of crops, increase post-harvest losses, and disrupt agricultural trade. The dynamics of disease spread are complex, influenced by the pathogen's biology, host susceptibility, and environmental factors, with water often playing a pivotal role (Chen et al., 2013).

The Direct and Indirect Links between Water and Crop Disease

Water acts as a critical link in the disease triangle (host, pathogen, environment), influencing both the pathogen's survival and dispersal, and the host's susceptibility.

Direct Links

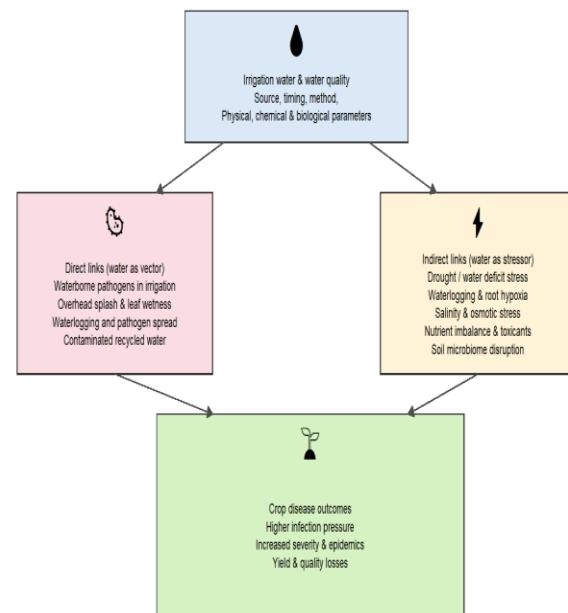
Many plant pathogens, particularly oomycetes (e.g., *Phytophthora*, *Pythium*), bacteria (e.g., *Xanthomonas*, *ralstonia*), and some fungi (e.g., *Fusarium*), are readily dispersed through irrigation water (Hong and Moorman, 2005). Zoospores of oomycetes, for instance, are motile in water and can actively swim to host roots, initiating infections. Bacterial cells can survive and multiply in water, spreading systemically across fields via irrigation channels or splash from overhead sprinklers. Even some plant viruses (e.g., Cucumber green mottle mosaic virus, Tobacco mosaic virus) can be transmitted through irrigation water, surviving for extended periods in water or plant debris (Dovas et al., 2004).

Overhead irrigation systems create conditions conducive to splash dispersal of pathogens from infected plant parts or soil to healthy foliage. Water droplets can carry spores or bacterial cells, initiating new infection foci (Huber and Gillespie, 1992). Prolonged leaf wetness, resulting from irrigation or high humidity, provides the necessary moisture for spore germination and infection by many foliar pathogens, such as downy mildews and anthracnose (Madden and Ellis, 1988; Hong and Moorman, 2005).

Water management practices can exacerbate soil-borne diseases (Kumar et al., 2009). Excessive irrigation or poor drainage can lead to waterlogged conditions, creating anaerobic environments that favor certain root rot pathogens (e.g., *Phytophthora* species), which thrive in saturated soils. Water can also transport inoculum within the soil profile, moving pathogen propagules from contaminated areas to clean ones (Reid et al., 2015).

Indirect Links

Both water deficit (drought stress) and water excess (waterlogging) can predispose plants to disease by weakening their physical barriers and compromising their immune responses (Chaves et al., 2009). Drought-stressed plants may divert resources from defense mechanisms to survival, making them more vulnerable to pathogens like *Fusarium* wilts (Kessens et al., 2017). Conversely, waterlogged conditions can impair


root function, leading to oxygen deprivation and making roots more susceptible to opportunistic pathogens (Paula et al., 2019).

The chemical composition of irrigation water, including the concentration of essential nutrients and potentially toxic elements, can influence plant vigor and disease resistance. Nutrient deficiencies (e.g., lack of calcium, potassium) can weaken cell walls, making plants more susceptible to mechanical damage and pathogen invasion (Huber and Gillespie, 1992). Conversely, excessive nutrients, particularly nitrogen, can lead to lush, succulent growth that is more attractive to certain pathogens and pests (Mao et al., 2017).

Irrigation water quality can significantly alter the composition and activity of the soil microbiome, which plays a crucial role in plant health and disease suppression (Raaijmakers and Mazzola, 2012). Contaminants in water, such as heavy metals or certain organic pollutants, can be detrimental to beneficial microorganisms, thereby reducing the soil's natural suppressive capacity against plant pathogens (Mao et al., 2017).

Understanding these direct and indirect links is paramount for developing effective water management strategies that not only conserve resources but also actively contribute to crop health and disease mitigation.

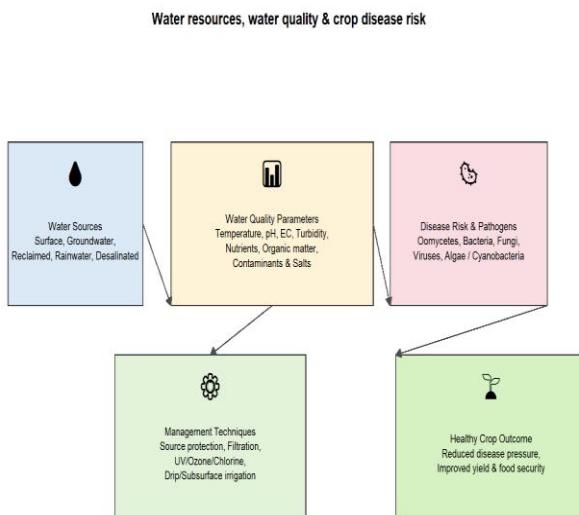

Direct and indirect links between water and crop disease

Figure 1. Conceptual diagram of direct and indirect links between irrigation water, water quality, and crop disease outcomes (Kumar et al., 2009)

Important Water Resources in Agriculture and their Disease Implications

The selection and management of water resources for irrigation are critical decisions that directly influence agricultural productivity and, importantly, crop health. Each source presents a unique set of advantages, limitations, and potential risks concerning the introduction and spread of plant pathogens (Hong et al., 2003).

Figure 2. Summary of major agricultural water sources and their links to water quality parameters, disease risk, management techniques, and healthy crop outcomes (Huber and Gillespie, 1992)

Surface Water (Rivers, Lakes, Canals)

Surface water bodies are traditionally the most relied-upon sources for agricultural irrigation globally, primarily due to their accessibility and often large volumes (Kanda et al., 2004).

Pros

Readily available in many agricultural areas, often requiring less energy for extraction compared to groundwater, and can carry beneficial dissolved nutrients (Kanda et al., 2004).

Cons

Significant variables can be found in quality, especially seasonally, and are extremely susceptible to contamination from various anthropogenic and natural sources (Kanda et al., 2004). Agricultural runoff containing pesticides, fertilizers, and animal waste, industrial discharges, urban wastewater and natural erosion all contribute to elevated levels of suspended solids, organic matter, chemical pollutants, and microbial contaminants (Pavis et al., 2011). Surface water is a significant reservoir and dispersal mechanism for numerous plant pathogens (Pavis et al., 2011).

Oomycetes are species of *Phytophthora* and *Pythium*, notorious root rot and damping-off pathogens, are frequently isolated from rivers, lakes, and irrigation canals (Hong and Moorman, 2005). Their motile zoospores can travel long distances in water and actively infect host roots. For example, *Phytophthora cinnamomi*, a broad-host range pathogen, has been detected in irrigation reservoirs and stream water used for avocado and ornamental production (Crowe et al., 2001).

Many plant pathogenic bacteria, such as *Xanthomonas*, *Pseudomonas*, and *Ralstonia* species, can survive and be disseminated in surface water. *Ralstonia solanacearum*, the causal agent of bacterial wilt, can persist in irrigation water and infect various solanaceous crops. Splash dispersal from overhead irrigation drawing from contaminated surface water is a common pathway for bacterial leaf spot diseases (Paula et al., 2019).

While fungi are generally less adapted to prolonged survival in water than oomycetes or bacteria, certain fungal spores (e.g., *Fusarium oxysporum* chlamydospores, *Colletotrichum* conidia) can be transported

in surface water and initiate infections, particularly in nursery and greenhouse settings (Duniway, 2002).

Though less common, some robust plant viruses like Tobacco mosaic virus (TMV) and Cucumber green mottle mosaic virus (CGMMV) can persist in surface water, especially if contaminated with infected plant debris, and be transmitted to crops via irrigation (Pedrero and Alarcón, 2009).

Due to the high risk of pathogen presence, surface water often requires pretreatment before agricultural application, especially for sensitive crops or in intensive production systems. Watershed management and riparian buffers are crucial for protecting source water quality (Huber and Gillespie, 1992).

Groundwater (Wells, Aquifers)

Groundwater, extracted from wells and aquifers, is another vital source for irrigation, especially in regions with limited surface water (Foster and Chilton, 2004).

Pros

Typically possesses higher intrinsic quality than surface water, with lower levels of suspended solids, organic matter, and microbial contaminants due to natural filtration as water percolates through soil and rock layers (Foster and Chilton, 2004). This often reduces the immediate risk of waterborne pathogen transmission.

Cons

They are vulnerable to depletion through over-extraction, leading to falling water tables and increased pumping costs. It can also be subject to the following processes (Foster and Chilton, 2004).

Leaching of agricultural chemicals (nitrates, phosphates, pesticides) from intensive farming practices and industrial pollutants can contaminate aquifers (Kanda et al., 2004). Heavy metals (e.g., arsenic, cadmium, lead) can also occur naturally or due to anthropogenic activities. Over-extraction in coastal areas can lead to saltwater intrusion, increasing water salinity and posing osmotic stress to crops (Angelakis and Snyder, 2015).

High concentrations of nitrates, pesticides, or heavy metals can induce phytotoxicity, weaken plant immunity, and make crops more susceptible to various diseases. For example, excessive nitrogen often leads to lush growth prone to fungal infections, while heavy metal toxicity can disrupt nutrient balance and stress plants (Angelakis and Snyder, 2015).

Irrigating with saline groundwater directly imposes osmotic stress on plants, reducing water uptake and energy availability for defense mechanisms, thereby increasing susceptibility to drought-tolerant pathogens or opportunistic infections (Munns and Tester, 2008). In rare cases, some soilborne pathogens might persist in shallow groundwater systems, particularly if linked to surface water or recent soil contamination events, though this is less common than in surface water (Angelakis and Snyder, 2015).

Management Considerations

Sustainable groundwater management involves monitoring abstraction rates, protecting recharge areas from pollution, and regular water quality testing, particularly for chemical parameters and salinity (Qadir et al., 2010).

Reclaimed/Recycled Wastewater

Reclaimed wastewater, treated municipal or industrial effluent, represents a growing and sustainable alternative for irrigation, addressing freshwater scarcity and reducing environmental discharge of treated wastewater (Qadir et al., 2010).

Pros

Reduces demand on potable freshwater sources, provides a reliable and consistent supply, and can contain valuable nutrients (nitrogen,

phosphorus) that reduce the need for synthetic fertilizers (Angelakis and Snyder, 2015).

Cons

High risk of pathogen presence and chemical contaminants if not adequately treated. Public perception and regulatory hurdles are also significant challenges (Angelakis and Snyder, 2015). Bacteria (e.g., *E. coli*, *Salmonella*), viruses (e.g., Norovirus, Adenovirus), protozoa (e.g., *Cryptosporidium*, *Giardia*), and helminths, pose risks to human health, livestock, and potentially plants. The survival of plant-specific pathogens in treated wastewater is also a concern (Paerl and Huisman, 2008). Pharmaceuticals, personal care products, microplastics, and endocrine-disrupting chemicals are increasingly detected in treated wastewater, with unknown long-term effects on crops, soil ecosystems, and human health (Pedrero and Alarcón, 2009). While treatment can reduce some elevated levels of heavy metals and salts can persist, leading to soil accumulation and phytotoxicity over time (Chen et al., 2013).

Studies have confirmed the presence and survival of numerous plant pathogens in treated wastewater, including oomycetes (*Phytophthora* spp., *Pythium* spp.), bacteria (*Xanthomonas* spp., *Ralstonia solanacearum*, *Agrobacterium* spp.), and even some plant viruses (Reid et al., 2015). Inadequate treatment or post-treatment contamination can directly introduce these pathogens to fields, especially in nursery and greenhouse settings where recycled water systems are common. While not directly a "crop disease," the presence of human enteric pathogens can lead to contamination of edible crops, particularly those consumed raw, posing significant food safety concerns (Harden et al., 2011). Long-term irrigation with wastewater, even if treated, can alter soil physicochemical properties and microbial communities, potentially affecting disease suppressiveness or favoring specific pathogens (Rusin et al., 2009).

Management Considerations

Stringent treatment regimes (e.g., tertiary treatment, disinfection), continuous monitoring, and strict regulatory guidelines are essential for safe and sustainable use of reclaimed wastewater in agriculture. Application methods should minimize contact with edible parts of crops (Kessens et al., 2017).

Rainwater Harvesting

Rainwater harvesting involves collecting and storing rainwater for later use, offering a localized and relatively clean water source (Reid et al., 2015).

Pros

Reduces reliance on external water sources, often has low salinity and chemical content, and can be a cost-effective solution for small-scale agriculture or supplementary irrigation (Reid et al., 2015; Coombes, 2007).

Cons

Intermittent supply requires substantial storage capacity. The quality can be influenced by ambient air pollution and the collection surface (Coombes, 2007). Rainwater quality can be affected by atmospheric pollutants (acid rain, dust), bird droppings, debris, and microbial growth (algae, bacteria) on collection surfaces (e.g., roofs) and in storage tanks (Coombes, 2007). Rain can wash airborne fungal spores or bacterial cells from the atmosphere onto plants. However, the primary risk for disease is usually associated with contaminants from the collection surface or storage (e.g., algal growth in tanks creating a favorable environment for some waterborne pathogens) (Coombes, 2007). Open storage tanks can become breeding grounds for mosquitoes and other vectors, and if plant debris enters, it could serve as inoculum for certain plant pathogens.

Management Considerations

Proper design of collection surfaces (clean materials), first-flush diversion systems, covered storage tanks, and periodic cleaning are essential for maintaining rainwater quality. Filtration and disinfection may be considered for sensitive crops (Coombes, 2007).

Desalinated Water

Desalination removes salts and impurities from seawater or brackish groundwater, producing high-purity freshwater (Ghaffour et al., 2009).

Pros

It provides a reliable, drought-proof water supply in arid coastal regions. The resulting water is typically of very high chemical and microbial quality, free from salts, heavy metals, and most pathogens (Ghaffour et al., 2009).

Cons

It is extremely energy-intensive and expensive, making it economically viable mainly for high-value crops or in regions with severe water scarcity and significant financial resources. Brine disposal is an environmental concern (Ghaffour et al., 2009). For direct pathogen transmission, desalinated water poses virtually no risk due to its extensive treatment process (reverse osmosis removes virtually all microorganisms). The primary "disease implication" of desalinated water is its ultra-low mineral content. While seemingly beneficial, this can lead to nutrient deficiencies if not adequately supplemented with essential minerals for crop growth (Hanson and May, 2004). This nutrient imbalance could, in turn, weaken plants and indirectly increase susceptibility to certain diseases.

Management Considerations

Mineral supplementation is crucial. The high cost limits its widespread agricultural adoption, typically reserved for greenhouse hydroponic systems or very high-value field crops. In summary, each water resource carries a distinct disease profile, necessitating targeted management strategies. Surface water and reclaimed wastewater demand the most rigorous quality control due to their inherent pathogen risks, while groundwater and rainwater require monitoring for chemical and intermittent microbial contaminants. Desalinated water, though pure, requires careful nutrient management. Sustainable agriculture increasingly mandates an integrated approach that considers not only water quantity but critically, its quality in relation to crop health (Hanson and May, 2004).

Water Quality Parameters and Their Impact on Crop Disease

Water quality is a complex concept defined by a suite of physical, chemical, and biological characteristics that determine its suitability for a particular use. For irrigation, these parameters are not only critical for plant growth but also profoundly influence the susceptibility of crops to diseases and the survival and dispersal of pathogens (Chen et al., 2013).

Physical Parameters

Physical characteristics of irrigation water primarily affect the direct interaction with plants and the efficacy of water treatment methods (Chen et al., 2013).

Temperature

Water temperature significantly influences pathogen growth rates, sporulation, and survival (Erwin and Ribeiro, 1996). Many soilborne pathogens, particularly oomycetes like *Pythium* and *Phytophthora*, thrive in specific temperature ranges. For instance, cooler water can slow down pathogen development, while warmer water can accelerate it. High temperatures can stress plants, making them more vulnerable to heat-tolerant pathogens. Furthermore, water temperature affects the solubility of oxygen and other chemicals, influencing microbial activity in the water and soil (Liltved and Cripps, 2005). Cool irrigation water (e.g., from deep wells) can reduce the incidence of some root diseases that

prefer warmer temperatures by limiting pathogen activity. Conversely, warm water from shallow ponds in summer can increase the risk of rapid disease development.

Turbidity/Suspended Solids

Turbidity, caused by suspended particles (silt, clay, organic matter, microorganisms), reduces water clarity. High turbidity can clog irrigation emitters, filters, and pumps, increasing maintenance costs. More critically, suspended solids can shield pathogens from UV irradiation and chemical disinfectants, reducing the efficacy of water treatment (Liltved and Cripps, 2005). They also provide physical protection and nutrient sources for microbial growth. Particulate matter can carry pathogen propagules (spores, bacterial cells) and facilitate their spread. The presence of organic matter provides a food source for some pathogens and can reduce the effectiveness of oxidants like chlorine by reacting with them (Liltved and Cripps, 2005).

pH

pH (potential of hydrogen) measures the acidity or alkalinity of water. It influences nutrient availability in the soil, the solubility and toxicity of heavy metals, and the efficacy of disinfectants (e.g., chlorine is more effective at lower pH). Plant growth is optimal within specific pH ranges, typically between 6.0 and 7.0 for most crops (Liltved and Cripps, 2005). Extreme pH (either too high or too low) can stress plants, making them more susceptible to disease. For example, high soil pH can induce micronutrient deficiencies (e.g., iron chlorosis), weakening plants. Some pathogens also have specific pH optima for growth and virulence. For instance, common scab of potato (*Streptomyces scabies*) is favored by alkaline soil conditions (Loria et al., 2006).

Chemical Parameters

Chemical composition is arguably the most complex and impactful aspect of water quality for crop health (Dovas et al., 2004).

Salinity/Electrical Conductivity (EC)

Salinity refers to the total concentration of dissolved salts. Electrical conductivity (EC) is a proxy measure for salinity. High salinity in irrigation water and subsequently in soil leads to osmotic stress, making it difficult for plants to absorb water and nutrients (Munns and Tester, 2008). This reduces plant growth, causes specific ion toxicities (e.g., sodium, chloride), and can lead to yield losses. Salinity stress significantly weakens plants, making them more susceptible to a wide range of diseases. Stressed plants have compromised defense mechanisms, reduced vigor, and slower recovery from pathogen attack. For example, salinity can increase the severity of *Fusarium* wilt in various crops by weakening the host (Mao et al., 2017). Conversely, some opportunistic pathogens might thrive on stressed plants.

Nutrient Levels (N, P, K, Micronutrients)

Irrigation water can contain dissolved plant nutrients, particularly in surface water or reclaimed wastewater. While some nutrients are beneficial, imbalances or excessive levels can be detrimental. Especially high nitrogen can lead to lush, succulent plant growth (etiolation) with thinner cell walls, making them more vulnerable to mechanical injury and easier for pathogens to penetrate. High nitrogen can favor certain fungal and bacterial pathogens. For instance, high nitrogen has been linked to increased severity of powdery mildew (Reuveni, 2014). Eutrophication (excess nutrients) in water bodies can lead to algal blooms, which can clog irrigation systems and, under decomposition, lead to anaerobic conditions favorable for certain root rot pathogens (Reuveni, 2014).

Lack of essential macro- or micronutrients (e.g., potassium for cell wall strength, calcium for structural integrity, manganese for defense enzymes) can compromise plant immunity and physical barriers,

predisposing them to various diseases (Huber and Gillespie, 1992). For example, calcium deficiency increases susceptibility to soft rot bacteria.

Organic Matter

Dissolved and particulate organic matter (DOM, POM) in water serves as a nutrient source for microorganisms, including pathogens. It also reacts with chemical disinfectants (e.g., chlorine), forming disinfection byproducts (DBPs) and reducing the disinfectant's effective concentration. High organic matter can also contribute to biofilm formation in irrigation pipes (Reuveni, 2014). Organic matter supports the survival and growth of plant pathogens within the water itself and in biofilms. Biofilms can protect pathogens from disinfectants and act as reservoirs for re-contamination (Chaudhary et al., 2000).

Pesticide/Herbicide Residues

Runoff from agricultural fields can introduce pesticide and herbicide residues into irrigation water sources. These chemicals can be phytotoxic to sensitive crops, even at low concentrations, or accumulate in plant tissues (Baldry, 1983). Direct phytotoxicity weakens plants, making them more susceptible to opportunistic diseases. Some herbicides can alter plant metabolism or hormone balance, compromising defense responses. Long-term exposure to certain residues might also affect beneficial soil microbial communities, reducing natural disease suppression (Baldry, 1983).

Heavy Metals

Heavy metals (e.g., cadmium, lead, mercury, arsenic, chromium) can be present in water from industrial discharge, mining activities, or natural geological sources. They are toxic to plants, inhibit growth, enzyme activity, and photosynthesis, and can accumulate in edible parts. Heavy metal toxicity imposes severe stress on plants, leading to weakened immune systems and increased susceptibility to a wide range of biotic stresses, including pathogens. Metal-stressed plants are less able to defend themselves against invasion (Reuveni, 2014).

Biological Parameters

Biological parameters directly assess the presence and activity of microorganisms, including plant pathogens.

Indicator Organisms

Primarily indicators of fecal contamination and potential human health risks, their presence in irrigation water suggests broader microbial pollution. Total coliforms and *E. coli* are commonly used to monitor water quality (Hong et al., 2003). While not typically plant pathogens themselves, high levels of fecal indicators suggest that the water source is contaminated with organic waste and may contain other enteric pathogens (relevant for food safety) and potentially a broader spectrum of plant pathogens (Hong et al., 2003). They serve as a general warning sign for poor water quality.

Specific Plant Pathogens (Fungi, Bacteria, Oomycetes, Viruses)

Direct detection of plant pathogens in irrigation water is the most definitive indicator of disease risk. Many important pathogens have mechanisms for survival and dispersal in water. *Phytophthora* and *Pythium* species produce motile zoospores and sporangia that are highly adapted for waterborne dispersal. They can be found in recirculating hydroponic solutions, nurseries, and field irrigation water, leading to root rots, damping-off, and stem lesions (Hong and Moorman, 2005). Plant pathogenic bacteria (e.g., *Xanthomonas*, *Pseudomonas*, *Ralstonia*) can survive epiphytically on weeds, in soil, or directly in water for varying periods. Irrigation water, especially overhead sprinklers, serves as a primary vehicle for their spread, causing leaf spots, blights, and wilts. Although less mobile in water, spores and mycelial fragments of fungi like *Fusarium* spp., *Rhizoctonia*, and *Colletotrichum* can be transported in irrigation water, leading to damping-off, wilts, and

anthracnose (Duniway, 2002). Highly stable viruses like TMV and CGMMV can persist in water (often associated with plant debris) and be mechanically transmitted via irrigation water to healthy plants (Dovas et al., 2004).

Algae and Cyanobacteria

Algal blooms, particularly of cyanobacteria (blue-green algae), can occur in irrigation reservoirs and channels, especially with high nutrient levels. They can clog irrigation filters and emitters (e.g., drip lines), reducing irrigation efficiency (Kumar et al., 2009). Some cyanobacteria produce potent toxins (cyanotoxins) that can be phytotoxic to crops or pose health risks to livestock and humans (Pael and Huisman, 2008). Algal growth itself is not typically a direct plant pathogen, but severe blooms indicate eutrophication and poor water quality. Decomposition of large algal masses can lead to anaerobic conditions in water and soil. Cyanotoxins can directly stress plants, making them more susceptible to disease. Understanding these water quality parameters is crucial for proactive disease management. Regular monitoring allows for early detection of issues, enabling timely intervention through water treatment or adjustments in irrigation practices to mitigate adverse impacts on crop health.

Water Quality Management Techniques for Crop Disease Prevention and Control

Effective water quality management is an indispensable component of an integrated strategy for crop disease prevention and control. It involves a multi-pronged approach encompassing source water protection, on-farm treatment, optimized irrigation system design, and integration with broader IPM principles.

Source Water Protection and Monitoring

The first line of defense against waterborne crop diseases is to maintain the quality of the water source itself.

Watershed Management

Protecting the entire watershed surrounding agricultural water sources (rivers, lakes, reservoirs) is crucial. This involves reducing pollution from urban, industrial, and agricultural runoff (e.g., nutrient and pesticide management in upstream areas). Riparian buffers (vegetated strips along waterways) effectively filter pollutants and stabilize soil, preventing erosion and reducing pathogen entry (Dillaha et al., 1989).

Minimizing Agricultural Runoff

Farmers can implement several practices to reduce the contamination of surface waters from their own operations. These include cover cropping, conservation tillage, proper timing and placement of fertilizers and pesticides, and constructing retention ponds to capture and treat runoff.

Regular Monitoring

Systematic and routine monitoring of irrigation water sources for physical, chemical, and biological parameters is essential. This includes measuring turbidity, pH, EC, nutrient levels, and, critically, the presence of indicator organisms (e.g., *E. coli*) and specific plant pathogens. Continuous or frequent monitoring can provide early warnings of contamination events, allowing for timely intervention (e.g., switching water sources, implementing on-farm treatment, delaying irrigation for sensitive crops) before pathogens spread widely (Hong et al., 2003). Advanced molecular techniques (e.g., qPCR) can provide rapid and sensitive detection of specific pathogens.

Pre-Treatment and On-Farm Treatment Technologies

When source water quality is compromised or for high-value crops and recirculating systems (e.g., greenhouses, nurseries), on-farm treatment becomes necessary. These technologies aim to remove or inactivate pathogens and undesirable chemical constituents before the water reaches the crops (Ghaffour et al., 2009).

Physical Methods

Filtration is a primary physical treatment for removing suspended solids, organic matter, and particulate pathogens. Sand Filters are effective at removing larger particles and some microorganisms. Slow sand filters can also biologically degrade organic matter and remove some pathogens (Ellis, 2017). Screen and disc filters are used as primary filters to protect irrigation emitters from clogging and remove coarser particles. Ultrafiltration (UF) is the use of membranes with a pore size typically 0.01-0.1 µm, highly effective at removing bacteria, viruses, and most suspended solids and colloids.

Reverse osmosis (RO) employs very fine membranes (<0.001 µm) to remove dissolved salts, ions, organic molecules, and virtually all microorganisms, producing high-purity water. RO is energy-intensive and costly but produces water of exceptional quality, making it suitable for hydroponics or highly sensitive crops after mineral supplementation. Sedimentation/decantation allows water to stand in settling ponds or tanks for a period permits heavier suspended particles, including some pathogen propagules, to settle out. This is often a preliminary step before further treatment. UV irradiation utilizes ultraviolet light (specifically UV-C at 200-280 nm) to inactivate pathogens by damaging their DNA, preventing replication (Liltved and Cripps, 2005). Broad-spectrum (effective against bacteria, viruses, fungi, oomycetes), leaves no chemical residuals, relatively low operating cost once installed. Efficacy is significantly reduced by turbidity and high organic matter (UV-absorbing substances), requiring pre-filtration. Pathogens can potentially repair damaged DNA (photoreactivation) if exposed to visible light immediately after treatment (Harden et al., 2011)

Heat treatment/pasteurization involves heating water to a specific temperature for a certain duration (e.g., 95°C for 30 seconds) to kill most pathogens (bacteria, fungi, oomycetes, viruses) (Runia, 2011). It is highly effective against a wide range of pathogens. Energy-intensive, leading to high operational costs, and generally only practical for recirculating systems in greenhouses or nurseries due to the volume of water required.

Chemical Methods

Chlorine (as hypochlorite solutions or gas) and chlorine dioxide are strong oxidizers commonly used as broad-spectrum disinfectants. They damage pathogen cell membranes, proteins, and nucleic acids. Widely available, relatively inexpensive, and provides residual disinfection. Chlorination is effective against bacteria, and many viruses and fungi. Efficacy of the chlorination process is pH, and temperature-dependent. Chlorine can react with organic matter to form potentially harmful disinfection byproducts (DBPs) like trihalomethanes, which can be phytotoxic or accumulate in plants. Some pathogens (e.g., Cryptosporidium oocysts) are highly chlorine-resistant. Careful dosage is required to avoid phytotoxicity (Pandya et al., 2011)

Ozone (O₃) is a powerful oxidant generated on-site. It reacts rapidly to destroy cell walls, enzymes, and genetic material of pathogens. This method is extremely effective against a broad spectrum of pathogens (bacteria, viruses, fungi, oomycetes), decomposes rapidly into oxygen, leaving no harmful residuals. Also this method is effective against organic micropollutants. High initial and operational costs, requires specialized equipment, limited residual effect. Peracetic acid (PAA) and hydrogen peroxide (H₂O₂) are strong peroxy compounds that act as oxidizers. PAA is often used in combination with H₂O₂ (peroxyacetic acid). Generate reactive oxygen species that damage cells and cellular components (Baldry, 1983). This is a broad-spectrum activity against bacteria, fungi, oomycetes, and some viruses. They are biodegradable and generally less prone to DBP formation than chlorine. This method is effective in the presence of some organic matter.

They can be corrosive to irrigation system components at high concentrations. They have less residual activity than chlorine. Environmental fate and potential long-term effects on soil microorganisms need further study. Primarily used as algicides and some fungicidal/bactericidal agents. They are effective against algae and some waterborne pathogens. They can accumulate in soil, leading to copper toxicity, especially with long-term use. Regulatory limits for copper in water and soil exist (Reid et al., 2015)

Biological Methods

Constructed wetlands and biofilters systems utilize natural processes involving plants, soil, and microbial communities to filter and degrade pollutants and remove pathogens from wastewater or agricultural runoff. Environmentally friendly, low operating cost, can improve biodiversity, and provide habitat. These systems require significant land area, slower treatment rates, effectiveness can vary with environmental conditions, and may not fully eliminate all pathogens without further treatment. Primarily suitable for less intensive treatment or large-scale landscape applications (Qadir et al., 2010)

Irrigation System Design and Management

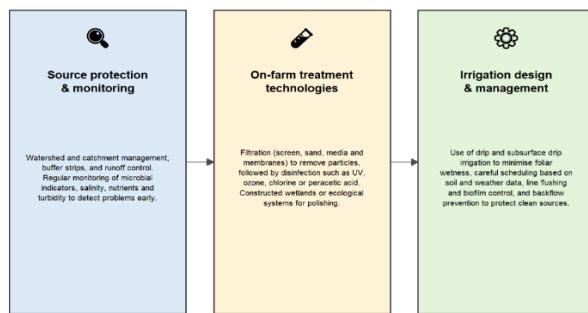
The choice and management of irrigation systems play a direct role in minimizing pathogen dispersal and creating less favorable conditions for disease development.

Drip and Subsurface Drip Irrigation (SDI)

These methods deliver water directly to the root zone, minimizing wetting of foliage and reducing splash dispersal of pathogens (Lamm and Trooien, 2003). High water use efficiency reduces leaf wetness (critical for foliar diseases), minimizes weed growth, and limits the spread of waterborne pathogens on the soil surface. Significantly reduces the incidence of foliar diseases (e.g., bacterial leaf spots, downy mildews) and prevents splash-mediated spread of soilborne pathogens to aerial plant parts (Lamm and Trooien, 2003)

Avoiding Overhead Irrigation during High-Risk Periods

For crops susceptible to foliar diseases, avoid overhead irrigation in late evening or early morning when plants remain wet for extended periods, creating optimal conditions for pathogen infection (Huber and Gillespie, 1992).


Cleaning and Maintenance of Irrigation Systems

Biofilms can form inside irrigation pipes, acting as reservoirs for bacteria, fungi, and algal growth, which can then be flushed out into the field (Chaudhary et al., 2000). Regular flushing, chlorination, or acid treatment of irrigation lines can prevent biofilm buildup and maintain water quality within the system.

Backflow Prevention

Critical to prevent the siphonage of contaminated water (e.g., from fertilizer tanks, chemical injection systems, or ponded field water) back into the main irrigation supply, which could contaminate the entire system (Pedrero and Alarcón, 2009)

Water quality management toolbox for crop disease prevention

Figure 3. Infographic summary of key components of a water-focused crop disease management toolbox, illustrating source protection and monitoring, on-farm treatment technologies, and irrigation system design and scheduling strategies (Angelakis and Snyder, 2015)

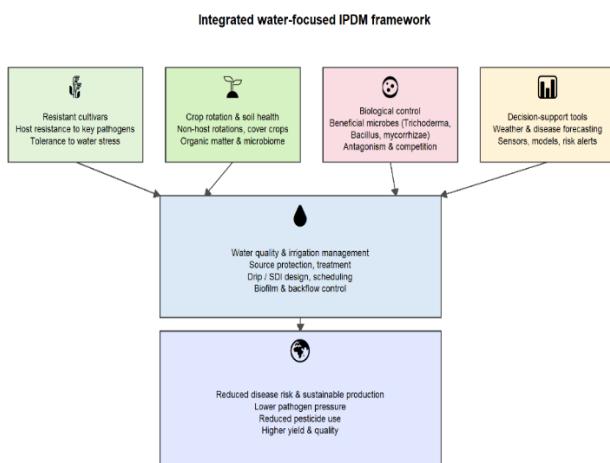
Integrated Pest and Disease Management (IPDM) Strategies

Water quality management is not a standalone solution but must be integrated into a broader IPDM framework (Mao et al., 2017)

Resistant Cultivars

Using crop varieties resistant or tolerant to waterborne pathogens or water stress can significantly reduce disease incidence even when water quality is less than ideal (Crowe et al., 2001)

Crop Rotation and Soil Health


Rotation with non-host crops helps break disease cycles and reduces the build-up of soilborne pathogens, which may also reduce inoculum in water sources. Practices that improve soil health (e.g., organic matter addition, cover cropping) enhance beneficial microbial communities that can suppress pathogens, impacting water quality indirectly by reducing runoff contamination (Pedrero and Alarcón, 2009)

Biological Control

Introducing beneficial microorganisms (e.g., *Trichoderma* spp., *Bacillus* spp.) that antagonize pathogens can be applied via irrigation water itself, providing another layer of disease control (Foster and Chilton, 2004)

Decision Support Tools

Utilizing models that integrate weather data, crop susceptibility, pathogen biology, and water quality parameters to optimize irrigation scheduling and disease forecasts can guide farmers to make informed decisions, reducing both water use and disease risk (Pavis et al., 2011). By meticulously managing water resources and implementing appropriate quality control measures, agricultural systems can significantly reduce the risk and severity of crop diseases, contributing to higher yields, reduced pesticide use, and overall sustainable agriculture (Pavis et al., 2011).

Figure 4. Integrated water-focused IPDM framework, water quality and irrigation management interact with resistant cultivars, crop rotation and soil health, biological control, and decision-support tools to reduce disease risk and support sustainable crop production (Lamm and Troien, 2003)

Case Studies and Illustrative Examples

The principles of water resource and quality management for crop disease control are best understood through specific examples of how water-borne pathogens impact agriculture (Hong et al., 2003)

Phytophthora Species in Horticultural Crops and Nurseries

Phytophthora species, a genus of oomycetes, are among the most destructive plant pathogens worldwide, causing root rots, stem cankers, blights, and fruit rots in a vast array of crops, including avocados, citrus, strawberries, ornamentals, and tree nuts. Their distinctive life cycle includes the production of motile zoospores, which are highly adapted for survival and dissemination in water (Hong and Moorman, 2005)

Impact of Water Source

Many studies have consistently isolated *Phytophthora* species from irrigation ponds, rivers, and recycled nursery runoff. For instance, *P. ramorum* (sudden oak death pathogen) and *P. cinnamomi* have been detected in irrigation water used in nurseries and natural ecosystems, leading to widespread outbreaks (Chang et al., 2011; Hong and Moorman, 2005). Zoospores released from infected plant debris or diseased plants in fields can travel through waterways, contaminating new areas. Recirculating hydroponic systems and container nurseries often reuse drainage water to conserve resources. This practice, if not coupled with effective disinfection, can rapidly accumulate *Phytophthora* inoculum. A single infected plant can release millions of zoospores, quickly spreading the pathogen throughout the entire system through the recycled irrigation water (Runia, 2011).

Management Techniques Applied

Nurseries successfully reduce *Phytophthora* spread by implementing multi-stage filtration (sand filters, then membrane filters) followed by UV irradiation or ozonation of recycled irrigation water (Runia, 2011). UV treatment effectively inactivates *Phytophthora* zoospores and sporangia, significantly reducing disease incidence. High-value propagation material and sensitive crops in greenhouses sometimes utilize pasteurization of recirculating water to eliminate *Phytophthora* and other heat-sensitive pathogens (Runia, 2011). For field-grown crops, protecting irrigation ponds from runoff containing diseased plant material or soil is crucial. Establishing buffer zones around water bodies can help filter inoculum (Runia, 2011). Shifting from overhead irrigation

to drip irrigation reduces splashing and direct contact of water with foliage, thereby minimizing the secondary spread of *Phytophthora* spores from soil to lower leaves (Runia, 2011).

Bacterial Leaf Spots and Blights

Plant pathogenic bacteria such as *Xanthomonas* and *Pseudomonas* species cause a wide array of leaf spot, blight, and canker diseases in crops like tomatoes, peppers, brassicas, and cereals. These pathogens are often epiphytic, surviving on leaf surfaces, and are highly reliant on water for dispersal and infection (Hong et al., 2003)

Impact of Water Source/Method

Overhead sprinkler irrigation is a primary driver of bacterial disease epidemics. Water droplets containing bacterial cells are splashed from infected plants or contaminated soil to healthy foliage, initiating new infections. Prolonged leaf wetness created by sprinklers provides ideal conditions for bacterial entry through natural openings (stomata) or wounds (Pandya et al., 2011). Surface water sources contaminated with residues from previously infected crops or weeds can harbor pathogenic bacterial populations. Using such water for overhead irrigation directly inoculates the crop (Pandya et al., 2011).

Management Techniques

Drip irrigation, is transitioning to drip or subsurface drip irrigation, eliminates leaf wetness and splash dispersal, dramatically reducing the spread and severity of bacterial leaf spot diseases. If overhead irrigation must be used, scheduling it when leaves can dry quickly (e.g., mid-morning, avoiding late evening) minimizes the duration of leaf wetness and reduces infection risk (Huber and Gillespie, 1992). Disinfection of irrigation water with chlorine or peracetic acid can reduce the bacterial load, though efficacy against specific plant pathogenic bacteria needs careful validation (Aoki et al., 2012). Proper plowing and removal of infected crop residues prevent overwintering of bacteria, reducing the primary inoculum source that can be dispersed by water.

Virus Transmission via Irrigation Water

While most plant viruses are insect-transmitted, a few highly stable viruses, particularly those in the Tobamovirus family (e.g., Tobacco mosaic virus – TMV, Tomato mosaic virus – ToMV, Cucumber green mottle mosaic virus - CGMMV), can be mechanically transmitted and persist in irrigation water, especially when contaminated with infected sap or plant debris (Dovas et al., 2004). These viruses are highly stable and can survive for prolonged periods in water, soil, and on contaminated surfaces.

Impact of Water/Practices

In greenhouse operations, if drainage water from infected plants is collected and reused without proper disinfection, tobamoviruses can easily spread throughout the entire crop (Runia, 2011). Water on hands or tools that have come into contact with infected plants can transfer virus particles during irrigation or handling (Harden et al., 2011)

Management Techniques

Heat treatment (pasteurization) or ozonation are highly effective against tobamoviruses in recycled water, crucial for preventing their spread in hydroponic and greenhouse systems (Runia, 2011). UV treatment generally has limited efficacy against some viruses unless high doses are used. Strict sanitation protocols, including disinfection of tools, equipment, and hands, are essential when working with susceptible crops, especially if irrigation water has a potential for contamination (Pavis et al., 2011). Preventing entry of infected plant material into the growing area and prompt removal of diseased plants reduces the inoculum source for water-borne spread (Paula et al., 2019). These case studies underscore the diverse ways water resources and their quality influence crop diseases and demonstrate the importance of tailored water management techniques in mitigating these threats. The

effectiveness of these strategies often lies in their integration with other cultural and biological controls within an overall IPDM program.

Challenges and Future Directions

Despite significant advancements in understanding and managing water quality for crop health, several persistent challenges and emerging issues demand attention, opening avenues for future research and innovation.

Challenges

Cost of Advanced Treatment Technologies

While highly effective, advanced water treatment technologies such as membrane filtration, ozonation, and heat treatment require substantial capital investment and operational costs. This can be prohibitive for small-scale farmers or in regions with limited financial resources, limiting widespread adoption (Qadir et al., 2010).

Lack of Specific Regulatory Thresholds for Plant Pathogens

Unlike human health pathogens, there are generally no widely adopted, legally binding water quality standards or thresholds for specific plant pathogens in irrigation water. Existing regulations often focus on human indicators (e.g., *E. coli*) and chemical parameters, leaving a significant gap in protecting crop health directly (Reid et al., 2015). This makes it difficult for farmers and regulators to assess and manage the actual risk of plant disease transmission via water.

Emerging Pathogens and Pathogen Resistance

Climate change, global trade, and evolving agricultural practices contribute to the emergence of new plant pathogens or shifts in the virulence and host range of existing ones. Moreover, pathogens can develop resistance to chemical disinfectants over time, similar to pesticide resistance, necessitating continuous development of new treatment methods (Runia, 2011).

Climate Change Impacts on Water Availability and Quality

Climate change exacerbates water scarcity in many regions through altered precipitation patterns, increased evaporation, and glacier melt. This impacts force agriculture to rely more on marginal water sources (e.g., lower quality surface water, reclaimed wastewater), increasing pathogen and contaminant risks. Extreme weather events (floods, droughts) can also directly impact water quality by increasing runoff, turbidity, and pathogen loads in surface waters (Kumar et al., 2009).

Public Perception of Recycled Water

Despite scientific evidence of safety with proper treatment, public perception and consumer acceptance of crops irrigated with reclaimed wastewater remains a significant barrier to its broader adoption (Pandya et al., 2011). This includes concerns about perceived health risks and aesthetic objections, even if regulations are met.

Monitoring Complexity

The sheer diversity of potential plant pathogens, coupled with variations in their survival rates, dispersal mechanisms, and detection methods, makes comprehensive monitoring of irrigation water for all relevant threats highly complex and resource-intensive (Hong et al., 2003).

Future Directions

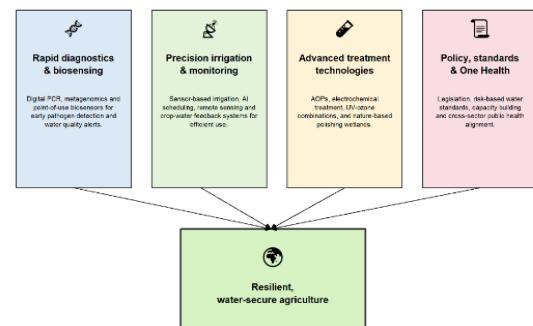
The challenges highlighted above underscore the urgent need for innovative research, technological advancements, and policy reforms to ensure sustainable water management for crop health.

Development of Rapid, Sensitive, and Cost-Effective Pathogen Detection Methods

Current methods for plant pathogen detection in water are often time-consuming, expensive, and lack the specificity or sensitivity required for routine on-farm monitoring. Future research should focus on developing the following techniques.

Molecular Diagnostics

Advanced qPCR, digital PCR, and next-generation sequencing (metagenomics) to rapidly identify and quantify specific plant pathogens and their virulence factors in water samples, providing actionable data for farmers. Biosensors and lab-on-a-chip technologies include miniaturized, portable, and automated devices capable of real-time or near real-time detection of multiple pathogens or indicator compounds directly in the field, reducing reliance on centralized laboratories (Logan et al., 2006).


Precision Irrigation and Water Management Systems

Integrating sensor technologies, remote sensing (e.g., satellite imagery, drones), and artificial intelligence (AI) to optimize irrigation scheduling based on real-time plant water needs, soil moisture, weather forecasts, and disease risk models (Jones, 2004). This can minimize periods of leaf wetness and overwatering, thereby reducing disease susceptibility and pathogen dispersal while conserving water.

Novel, Sustainable Water Treatment Technologies

Research into more energy-efficient, environmentally friendly, and cost-effective water treatment solutions is crucial. Advanced oxidation processes (AOPs) utilize highly reactive species (e.g., hydroxyl radicals generated by UV/H₂O₂, Fenton process) to degrade a wide range of organic contaminants and inactivate pathogens, offering higher efficiency and fewer byproducts than conventional chemical methods (Angelakis and Snyder, 2015). Exploring technologies like microbial fuel cells and bio-electrolytic systems for simultaneous wastewater treatment and energy recovery, making reclamation more sustainable (Logan et al., 2006). Phytoremediation and ecological engineering are the harnessing of plants and natural ecological processes in constructed wetlands or riparian zones for pathogen removal and chemical contaminant degradation, while integrating with landscape design.

Improved policy and regulatory frameworks are the Establishing of specific, science-based water quality guidelines and regulatory thresholds for known plant pathogens in irrigation water are imperative. This needs to be accompanied by clear protocols for monitoring, reporting, and enforcement, alongside incentives for adopting best management practices (Reid et al., 2015). Developing crop cultivars with improved resistance not only to specific waterborne pathogens but also to water stress (drought and waterlogging) will contribute significantly to mitigating disease risks associated with variable water quality and availability. Water quality management for crop disease must consider potential impacts on human food safety, animal health (e.g., livestock consuming contaminated forage), and ecosystem health. This facilitates integrated research and policy that addresses multiple risks simultaneously. Bridging the gap between scientific research and on-farm implementation through effective extension services, farmer training programs, and decision-support tools tailored to local contexts.

Figure 5. Future research and innovation pathways in irrigation water and crop disease management (Hong and Moorman, 2005).

CONCLUSION

Water is the lifeblood of agriculture, and its judicious management and quality control are not merely auxiliary practices but are intrinsically linked to the resilience and productivity of cropping systems. This review has elucidated the profound and multifaceted connection between agricultural water resources, critical water quality parameters, and the incidence and severity of crop diseases. From serving as a direct vector for numerous pathogens to influencing host susceptibility through chemical and physical stressors, water plays a pivotal role in the disease triangle.

The discussion has highlighted the inherent pathogen risks associated with diverse water sources surface water being particularly vulnerable to exogenous contamination, and reclaimed wastewater requiring stringent treatment to mitigate broad-spectrum microbial and chemical threats. Groundwater generally offers higher initial quality but is susceptible to chemical pollution and depletion. The intricate interplay of physical (temperature, turbidity, pH), chemical (salinity, nutrients, residues, heavy metals), and biological (pathogen presence, indicator organisms) water quality parameters directly dictates the survival, dispersal, and infectivity of pathogens, as well as the overall health and immune response of crops.

Crucially, the review has detailed a comprehensive array of water quality management techniques, ranging from proactive source water protection and monitoring to sophisticated on-farm treatment technologies. Physical methods like advanced filtration, UV irradiation, and heat treatment offer robust pathogen removal, while chemical disinfectants such as chlorination, ozonation, and peracetic acid provide potent antimicrobial action. Moreover, careful irrigation system design, favoring drip and subsurface methods over overhead sprinklers, fundamentally alters disease epidemiology by minimizing leaf wetness and splash dispersal. These techniques, whether standalone or in integrated frameworks, are indispensable tools in the arsenal against crop diseases.

However, the path forward is not without challenges. The escalating costs of advanced technologies, the absence of specific regulatory guidelines for plant pathogens in irrigation water, the dynamic threat of emerging pathogens, and the intensifying pressures of climate change collectively demand renewed focus and innovative solutions. Future endeavors must prioritize the development of rapid and cost-effective pathogen detection systems, the implementation of precision water management leveraging AI and sensor technologies, and the exploration of novel, sustainable water treatment methods. Furthermore, robust policy frameworks, alongside a holistic "One Health" approach that integrates food safety and environmental sustainability, are vital for securing the future of agriculture.

In conclusion, ensuring the availability of clean, pathogen-free water for irrigation is paramount for safeguarding crop health, minimizing yield losses, reducing reliance on chemical inputs, and ultimately, securing global food production in a rapidly changing world. A concerted, interdisciplinary effort is essential to transition towards truly sustainable water and agricultural systems that can meet the demands of a growing population while preserving ecological integrity.

Data availability

All data supporting the review results are included in the article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

REFERENCES

Angelakis, A. N., and Snyder, S. A. (2015). Wastewater treatment and reuse: Past, present, and future. *Water Research*, 87, 459-462.

Aoki, S., Hage, J. C., and Hong, C. X. (2012). Evaluation of oxidants for inactivating *Phytophthora nicotianae* in recycled irrigation water. *HortScience*, 47(1), 107-112.

Ashraf, M., and Ali, Q. (2007). Genotypic variation for salinity tolerance in crop plants. *Critical Reviews in Plant Sciences*, 26(4), 183-201.

Baldry, M. G. C. (1983). The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. *Journal of Applied Bacteriology*, 54(3), 417-423.

Chang, T. T., Yu, S. Y., Yang, K. T., and Shu, T. Y. (2011). *Phytophthora* species isolated from irrigation water, recycled irrigation water and water treatment devices in ornamental nurseries in Taiwan. *Forest Pathology*, 41(4), 273-280.

Chaudhary, N., Pathak, J., and Singh, R. K. (2000). Biofilm Formation and Its Control on Irrigation System. *Indian Journal of Microbiology*, 40(2), 143-148.

Chaves, M. M., Flexas, J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. *Annals of Botany*, 103(4), 551-560.

Chen, W., Westerhoff, P., Hartz, K., and Hu, M. (2013). Transformation of algal organic matter by chlorine and chlorine dioxide: Disinfection byproduct formation and implications for reclaimed water irrigation. *Environmental Science and Technology*, 47(12), 6432-6440.

Coombes, P. (2007). *Rainwater harvesting: A review and practice*. Australian Journal of Water Resources, 11(1).

Crowe, F. J., Stanghellini, M. E., and Moorman, G. W. (2001). Recovery of *Phytophthora cinnamomi* from irrigation water in avocado orchards. *Plant Disease*, 85(11), 1184-1188.

Czosnek, H., and Laterrot, H. (1997). A worldwide survey of tomato yellow leaf curl viruses. *Archives of Virology*, 142(7), 1391-1406.

Dean, R. A., Talbot, N. J., Ebbot, D. G., Thon, M., Kulkarni, B. K. S., Xu, J., and Xu, J. R. (2005). The genome sequence of the rice blast fungus *Magnaporthe oryzae* provides insights into plant pathogenicity and fungal evolution. *Nature*, 434(7036), 980-986.

Dillaha, T. A., Sherrard, R. B., and Lee, D. (1989). Biofilter beds for removal of nutrients and sediments from agricultural runoff. *Transactions of the ASAE*, 32(2), 524-530.

Dovas, C. I., Katsarou, E. C., and Vidakis, H. A. (2004). Detection and identification of Cucumber green mottle mosaic virus (CGMMV) in irrigation water. *European Journal of Plant Pathology*, 110(10), 1061-1065.

Duniway, J. M. (2002). Status of *Phytophthora* diseases in California and current research. *California Avocado Society Yearbook*, 86, 121-127.

Ellis, D. (2017). Slow sand filtration: An effective and sustainable water treatment technology. *Water Science and Technology: Water Supply*, 17(4), 987-996.

Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. G., and Shahid, S. (2012). Emerging fungal threats to animal, plant and human health. *Nature*, 484(7393), 186-193.

Foster, S., and Chilton, J. (2004). Groundwater: The processes and global significance of aquifer degradation. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 359(1448), 1779-1792.

Fry, W. E. (2008). *Phytophthora infestans*: The plant (and R) pathogen. *Molecular Plant Pathology*, 9(3), 385-402.

Ghaffour, N., Missimer, T. M., and Malek, A. (2009). Technology review of seawater pre-treatment for reverse osmosis desalination. *Desalination*, 249(2), 643-652.

Graham, J. H., Gottwald, T. R., Cubero, J., and Achor, D. (2004). Citrus canker: A literature review and assessment of its potential to spread in Florida citrus. *Plant Pathology*, 53(1), 1-14.

Hanson, B. R., and May, D. M. (2004). Drip irrigation of processing tomatoes—effects of irrigation amount and frequency. *HortScience*, 39(2), 290-295.

Harden, H. C., Hong, C. X., and Moorman, G. W. (2011). Dissemination of *Phytophthora* species by irrigation water and detection through DNA-based methods. *Journal of Water and Health*, 9(1), 101-110.

Hong, C. X., and Moorman, G. W. (2005). Plant pathogens in irrigation water: Challenges and solutions. *Plant Disease*, 89(10), 1012-1022.

Hong, C. X., Moorman, G. W., and Stromberg, E. L. (2003). Plant pathogen detection in irrigation water: A review. *Journal of Phytopathology*, 151(1), 1-13.

Huber, D. M., and Gillespie, B. L. (1992). The ecology and epidemiology of take-all disease of cereals and its control by crop rotation: A review. *Crop Protection*, 11(1), 5-11.

Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. *Journal of Experimental Botany*, 55(402), 2427-2436.

Kanda, R., Satoh, T., Kanno, H., and Kaneko, S. (2004). Impact of agricultural activities on groundwater nitrate contamination in the Nobi Plain, Japan. *Environmental Pollution*, 128(1-2), 179-186.

Kessens, B., van der Does, H. C., and Rep, M. (2017). Water stress enhances virulence of *Fusarium oxysporum* in tomato. *Plant Disease*, 101(8), 1419-1425.

Kumar, R., Singh, R., and Singh, R. S. (2009). Algal growth in irrigation water: A review. *Journal of Applied Phycology*, 21(4), 437-446.

Lamm, F. R., and Trooien, T. P. (2003). Drip irrigation for corn production. *Applied Engineering in Agriculture*, 19(3), 299-305.

Liltved, H., and Cripps, P. J. (2005). Photoreactivation of UV-irradiated *Vibrio anguillarum* in a model system for fish farming. *Aquaculture*, 250(1-2), 159-166.

Lin Lifeng and Chu Haitao. (2018). Quantifying Publication Bias in Meta-Analysis. *Biometrics*, 74(3): 785-794. doi:10.1111/biom.12817.

Logan, B. E., Hamelers, G. B., Rozendal, R. S., Schrader, U., Schuler, A. J., Sleutels, S. T., and Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. *Environmental Science and Technology*, 40(17), 5181-5192.

Loria, R., Bukhalid, R. A., and Hackett, B. P. (2006). *Streptomyces scabies* and common scab of potato. *Plant Disease*, 90(11), 1260-1271.

Madden, L. V., and Ellis, M. A. (1988). How to assess disease severity and yield loss due to anthracnose fruit rot of strawberry. *Plant Disease*, 72(11), 1018-1022.

Mao, B., Wang, Y., Cheng, L., Shen, X., Liu, Y., Zhang, W., and Jiang, J. (2017). Salt stress increases *Fusarium* wilt disease severity by affecting pathogenicity of the fungus and defense response of the host. *Scientific Reports*, 7(1), 1-13.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *bmj*, 372.

Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. *Annual Review of Plant Biology*, 59, 651-681.

Paerl, H. W., and Huisman, J. (2008). Blooms like it hot. *Science*, 320(5872), 57-58.

Pandya, P., Rathore, M. S., and Singh, A. (2011). Water resources management in India: Issues and challenges. *Water Policy*, 13(2), 174-192.

Paula, T. J., Araujo, L., and Bohnert, H. J. (2019). Plant responses to waterlogging: A molecular perspective. *Physiologia Plantarum*, 167(3), 441-454.

Pavis, S. H. K., Schou, O., and Nielsen, S. L. (2011). Decision support systems for irrigation scheduling: A review. *Agricultural Water Management*, 98(12), 1837-1845.

Pedrero, F., and Alarcón, J. J. (2009). Effects of treated wastewater irrigation on soil properties and crop yield. *Agricultural Water Management*, 96(5), 795-80 treated.

Qadir, M., Wichelns, D., Raschid-Sally, L., McCornick, P. G., Drechsel, L. P., Bahri, A., and Minhas, P. S. (2010). The path of wastewater use in agriculture: From marginal practice to global relevance. *Agricultural Water Management*, 97(11), 1641-1648.

Raaijmakers, J. M., and Mazzola, M. (2012). Diversity of plant-beneficial *Pseudomonas* from roots and soils. *FEMS Microbiology Ecology*, 79(3), 651-659.

Reid, A., McDonald, W. L. S., and Shattock, R. C. (2015). The risk of plant pathogen contamination in irrigation water. *Plant Pathology*, 64(2), 226-231.

Reuveni, M. (2014). Foliar-applied nutrients for control of powdery mildew on cucumber. *Journal of Plant Pathology*, 96(3), 513-518.

Runia, W. T. (2011). Disinfection of recirculating water in greenhouse horticulture: Research at the PTG. *Acta Horticultae*, 907, 111-120.

Rusin, P. A., Rose, J. B., and Sherriff, P. J. (2009). The survival of human enteric viruses in wastewater-irrigated soil. *Water Research*, 43(15), 3687-3694.