
59

 ISSN: 2226-7522

Science, Technology & Arts Research

April-June 2012, 1(2):59-64

Copyright©2012 STAR. All Rights Reserved

Amalgamation of Personal Software Process in Software
Development Practice

Abdul Kadir Khan

College of Computing and Informatics, Haramaya University, Haramaya, Ethiopia

Abstract Article Information

Today, concern for quality has become an international movement. Even
though most industrial organizations have now adopted modern quality
principles, the software community has continued to rely on testing as the
principal quality management method. Different decades have different trends
in software engineering. The Personal Software Process (PSP) is an
evolutionary series of personal software engineering techniques that an
engineer learns and practices. A software process is nothing without the
individual programmer. PSP a data driven process customized to teaching
individuals about their programming styles, helping software engineers further
develop their skills in developing quality software. Apart from discussing about
PSP as a framework of techniques to help engineers and their organizations to
improve their performance while simultaneously increasing product quality, in
this paper, the Personal Software Process definition, principles, design,
advantages and opportunities are explained focusing on the incorporation of
PSP concepts in software development practice

 Article History:

 Received : 30-04-2012

Revised : 24-06-2012

Accepted : 26-06-2012

 Keywords:

Personal Software Process

Software Development

Engineers

PSP Concepts

*Corresponding Author:

Abdul Kadir Khan

E-mail: qadirforu@gmail.com

INTRODUCTION

Modern quality principles have now been
adopted by most of the industrial organizations,
the software community has continued to rely on
testing as the principal quality management
method. Researchers and industrial leaders
began to realize that software process, plans and
methodologies for producing software, could help
to produce accurate project deadlines, help keep
software projects on budget and teach
programmers to be more productive and
knowledgeable of their own programming styles.
For software, the first major step in the direction
pioneered by Deming and Juran was taken by
Michael Fagan when in 1976 he introduced
software inspections (Fagan, 1976 and 1986). By
using inspections, organizations have
substantially improved software quality. Another
significant step in software quality improvement
was taken with the initial introduction of the
Capability Maturity Model (CMM) for software in
1987 (Humphrey, 1989; Paulk, 1995). The
CMM’s principal focus was on the management
system and the support and assistance provided

to the development engineers. The CMM has had
a substantial positive effect on the performance
of software organizations. A further significant
step in software quality improvement was taken
with the Personal Software Process (PSP)
(Humphrey, 1995).

In recent years there has been a great deal of
emphasis on the assessment and improvement
of the software development process.
Engineering is a set of disciplines seeking
solutions for complicated problems and systems
that could not be done by individuals. The aim of
engineering is to repetitively produce complicated
artifacts in an efficient way. As we know that the
term software engineering first appeared in the
1968 NATO Software Engineering Conference,
and was meant to provoke thought regarding the
perceived "software crisis" at the time. Software
professionals have been arguing the term
“software engineering” and its implication for
three decades since Frits Bauer invented it in
1968.

Review Article

Abdul Kadir Khan STAR, April-June 2012, 1(2):59-64

60

The Personal Software process (PSP) was
created by Watts Humphrey to address the need
for individual software engineers to acquire a
disciplined and effective approach to writing
programs. The philosophy behind the PSP is that
an organization’s ability to build large-scale
software systems dependent upon the ability of
its individual software engineers to develop high
quality small scale programs in a disciplined,
effective manner. The PSP is designed to help
engineers organize and plan their work, track
their performance, manage software defects, and
analyze and improve their personal process. The
Personal Software Process (PSP) has been
taught at a number of universities with impressive
results. It is also of interest to industry as a
means for training their software engineers. The
PSP is intended to improve the personal
practices of software engineers through the
evolutionary introduction of good software
engineering practices. This paper focuses on the
amalgamation of PSP in software development
practice.

Definition of PSP

“The establishment and use of sound engineering
principles in order to obtain economically
software that is reliable and works efficiently on
real machines” (Fritz Bauer, 1992).

Software engineering process is defined as the
system of all tasks and the supporting tools,
standards, methods, and practices involved in the
production and evolution of a software product
throughout the software life cycle. A process, in
its most basic form, is a sequence of steps
required to do a job. A software process defines
methods which allow the programmer separate
routine tasks from complex tasks and establish
the criteria for starting and finishing each process
step making the efficient use of his time.
Therefore process is a term used to describe the
people, methods, and tools used to produce
software products. Hence Software is intangible
and not subject to the same physical constraints
as hardware and many manufacturing products,
defining the software process can be difficult
therefore process driven software development
implies that organizational process is adapted to
meet project and product quality goals.

The Personal Software Process (PSP) is a
structured software development process that is
intended to help software engineers understand
and improve their performance, by using a
"disciplined, data driven procedure". The PSP
was created by Watts Humphrey to apply the
underlying principles of the Software Engineering

Institute’s (SEI) Capability Maturity Model (CMM)
to the software development practices of a single
developer. The PSP is similar to the Capability
Maturity Model (CMM), except that it focuses on
the personal process. It claims to give software
engineers the process skills necessary to work on
a Team Software Process (TSP) team. The PSP
concentrates on the work practices of the
individual engineers. The principle behind the
PSP is to produce quality software systems;
every engineer who works on the system must do
quality work. This means that almost everyone
associated with software development must know
how to do disciplined engineering work. When
engineers use the disciplined approach to
software development included by PSP, they
learn to become more competent engineers
producing quality software products on schedule.

The PSP is designed to help software

professionals consistently use sound engineering
practices. It shows them how to plan and track
their work, use a defined and measured process,
establish measurable goals, and track
performance against these goals. The PSP
shows engineers how to manage quality from the
beginning of the job, how to analyze the results of
each job, and how to use the results to improve
the process for the next project.

The Principles of the PSP

Right way and the right approach is to be
followed to do a software engineering job,
engineers must plan their work before committing
to or starting on a job, and they must use a
defined process to plan the work. To understand
their personal performance, they must measure
the time that they spend on each job step, the
defects that they inject and remove, and the sizes
of the products they produce. To consistently
produce quality products, engineers must plan,
measure, and track product quality, and they
must focus on quality from the beginning of a job.
Finally, they must analyze the results of each job
and use these findings to improve their personal
processes. Software design is characterized as a
set of practices and implementation techniques
that allow the construction of marketable software
systems that provide form and function satisfying
to users.

The PSP Design is based on the Following
Planning and Quality Principles:

 Every engineer is different; to be most
effective, engineers must plan their work and
they must base their plans on their own
personal data.

Abdul Kadir Khan STAR, April-June 2012, 1(2):59-64

61

 To consistently improve their performance,
engineers must personally use well defined
and measured processes.

 To produce quality products, engineers must
feel personally responsible for the quality of
their products. Superior products are not
produced by mistake; engineers must strive to
do quality work.

 It costs less to find and fix defects earlier in a
process than later.

 It is more efficient to prevent defects than to
find and fix them.

 The right way is always the fastest and
cheapest way to do a job.

The PSP Structure and Planning

Structure

The PSP is a personal process that can be
adapted to suit the needs of the individual
developer. It is not specific to any programming
or design methodology. Software engineering
methods can be considered to vary from
predictive through adaptive. The PSP is a
predictive methodology PSP training follows an
evolutionary improvement approach: an engineer
learning to integrate the PSP into his or her
process begins at the first level - PSP0
(Introduces process discipline and measurement,
estimating and planning) and progresses in
process maturity to the final level PSP2.1
(Introduces quality management and design).

The structure of the PSP process starting with a
requirements statement, the first step in the PSP
process is planning. There is a planning script
that guides this work and a plan summary for
recording the planning data. While the engineers
are following the script to do the work, they
record their time and defect data on the time and
defect logs. At the end of the job, during the
postmortem phase (PM), they summarize the
time and defect data from the logs, measure the
program size, and enter these data in the plan
summary form. When done, they deliver the
finished product along with the completed plan
summary form.

Process Discipline and Measurement PSP0,
PSP0.1: The main purpose of PSP0, the baseline
process, is to provide a general structural
framework for writing first PSP programs and for
gathering statistical data on this software. PSP0
has 3 phases: Planning, Development (design,
coding, compile and test) and a Post mortem. A
baseline is established of current process
measuring: time spent on programming, faults
injected/removed, size of a program. In a post
mortem, the engineer ensures that all the data for
the projects has been properly recorded and
analyzed. Once enough statistical data is
gathered, typically after a few programs have
been written or after a few projects, programmers
can analyze their own performance data to
manage and improve their individual personal
process (Figure 1).

Figure 1: PSP Process Flow.

PSP0.1 advances the process by adding a

coding standard, a size measurement and the
development of a personal process improvement
plan (PIP). In the PIP, the engineer records ideas
for improving his own process.

Introduces Estimating and Planning PSP1,
PSP1.1: When developing very large software
systems, it is very important to have a plan to
keep projects on schedule and programmers on
task. Based upon the baseline data collected in
PSP0 and PSP0.1, the engineer estimates the
size of a new program, historical data is assumed

Abdul Kadir Khan STAR, April-June 2012, 1(2):59-64

62

to be a good proxy because comparing future
parts with historical parts can help the
programmer to better understand the planned
product and make more accurate judgments
about its size and prepare a test report (PSP1).
Data accumulated from previous projects is used
to estimate the total time. Whereas estimation
bias is one root cause of estimation errors, a
programmer may always estimate a certain
percentage than the actual amount of work
performed. Secondly, estimation accuracy will
fluctuate around a mean by a certain standard
deviation therefore to gain more accurate size
estimations the programmer should eliminate this
estimation bias. Subsequently each new project
will record the actual time spent. This information
is used for task and schedule planning and
estimation.

Introduces Quality Management and Design
PSP2, PSP2.1: PSP2 adds two new phases:
design review and code review. At this stage, the
organization's engineers are able to use historical
data to estimate a project's size, and
management is able to plan accordingly. Now the
focus is on defect prevention to decrease
development time and produce higher quality
software products (Defect prevention and
removal are the focus at the PSP2). Engineers
learn to evaluate and improve their process by
measuring how long tasks take and the number
of defects they inject and remove in each phase
of development. Engineers construct and use
checklists for design and code reviews.
Reviewing designs before implementation allows
the programmer to see and incorporate potential
design improvements which can considerably
save time and effort. The main goal of a code
review is to be sure all of the details are correct.
The objectives of these different types of reviews
are the same, however to discover and to fix as
many defects as possible PSP2.1 introduces
design specification and analysis techniques.
(PSP3 is a legacy level that has been
superseded by TSP). The Team Software
Process (TSP) was developed to address the
commitment, control, quality and teamwork
problems faced by most software development
teams. By working together on a TSP, the
programmers are able to give management and
the customer a good idea of how much effort
would be involved in producing and develop the
desired software product.

Planning

The PSP uses the Proxy Based Estimation
(PROBE) method to improve a developer’s

estimating skills for more accurate project
planning. Logging time, defect, and size data is
an essential part of planning and tracking PSP
projects, as historical data is used to improve
estimating accuracy. The PSP also uses
statistical techniques, such as correlation, linear
regression, and standard deviation, to translate
data into useful information for improving
estimating, planning and quality. These statistical
formulas are calculated by the PSP tool. As
shown in figure 2, planning process contains
following steps:

Requirements: Engineers plan by defining the
work that needs to be done in detail manner. If all
they have is a one sentence requirements
statement, then that statement must be the basis
for the plan.

Conceptual Design: Since the planning phase is
too early to produce a complete product design,
engineers produce what is called a conceptual
design. Later, during the design phase, the
engineers examine design alternatives and
produce a complete product design. Therefore to
make an estimate and a plan, engineers first
define how the product is to be designed and
built.

Estimate Product Size and Resources: The
correlation of program size with development
time is good for engineering teams and
organizations but for individual engineers, the
correlation is generally quite high. Therefore, the
PSP starts with engineers estimating the sizes of
the products they will personally develop. Then,
based on their personal size and productivity
data, the engineers estimate the time required to
do the work.

In the PSP, these size and resource estimates

are made with the PROBE method. PROBE uses
proxies or objects as the basis for estimating the
likely size of a product. With PROBE, engineers
first determine the objects required to build the
product described by the conceptual design.
Then type and number of methods for each
object is determined. They refer to historical data
on the sizes of similar objects they have
previously developed and use linear regression to
determine the likely overall size of the finished
product.

http://en.wikipedia.org/wiki/Proxy-based_estimating

Abdul Kadir Khan STAR, April-June 2012, 1(2):59-64

63

PSP Planning

Figure 2: Project Planning Process.

Resource Estimating with PROBE: The
PROBE method also uses linear regression to
estimate development resources. Again, this
estimate is based on estimated size versus actual
effort data from at least three prior projects. The
data must demonstrate a reasonable correlation
between program size and development time.
Once they have estimated the total time for the
job, engineers use their historical data to estimate
the time needed for each phase of the job.

Using these percentages as a guide,
engineers allocate their estimated total
development time to the planning, design, design
review, code, code review, compile, unit test, and
postmortem phases. When done, they have an
estimate for the size of the program, the total
development time, and the time required for each
development phase.

Produce the Schedule: The Engineers spread
the task time over the available scheduled hours
to produce the planned time for completing each
task once they know the time required for each
process step, they estimate the time they will
spend on the job each day or week. For larger
projects, the PSP also introduces the earned
value method for scheduling and tracking the
work.

Develop the Product: In the step called develop
the product, the engineers do the actual
programming work and use the data from this
process to make future plans.

Analyze the Process: After completing a job, the
engineers do a postmortem analysis of the work.
In the postmortem, they update the project plan
summary with actual data, calculate any required
quality or other performance data and review how
well they performed against the plan. As a final
planning step, the engineers update their
historical size and productivity databases. At this
time, they also examine any process
improvement proposals (PIPs) and make process
adjustments. They also review the defects found
in compiling and testing, and update their
personal review checklists to help them find and
fix similar defects in the future.

PSP-Advantages, Challenges & Opportunities

Advantages

Context: The context is given by the definition of
the PSP as described by Humphrey (1995). We
may want to change the proposed PSP slightly,
but basically the context is provided, and hence
we do not have to define the context and

Abdul Kadir Khan STAR, April-June 2012, 1(2):59-64

64

describe it very carefully to allow for others to
understand our study from the context
perspective.

Replication: The context also forms the basis for
replication. Experiments and case studies can be
conducted at several places using the PSP.
Thus, the PSP may be one way to ease
replication. The PSP provides a stable process
and the process description is generally
available.

Measures: This is also closely related to the
PSP. Measures are collected as an integrated
part of the PSP, and it is fairly easy to add
measures of specific interest for an empirical
study. Thus, the PSP provides a good starting
point for collecting measures to use for
hypothesis testing of model building.

Challenges

Scaling: The PSP implements activities
performed in large scale project, hence scaling
down, for example, planning and estimation to
the individual level. The major challenge in using
the PSP as context is the ability to scale the
observation to other environments, and in
particular to large scale software development.
On the one hand, it is difficult to scale individual
results to large project, on the other hand the
PSP is supposed to act as a down-scaled project.

Validity: The validity of the observations and
findings is crucial. The actual validity for different
studies must be addressed separately, as the
ability is highly dependent on the study and what
we intend to generalize.

Opportunities

The PSP provides opportunities for experiential
studies. We may study the use of different
techniques and methods, or investigate the
relationships between different attributes. The
main limitation of using the PSP as a basis for
experiential studies is that we cannot use it to
study group activities. It is possible to experiment
with using different reading techniques on an
individual basis, but we are unable to study the
use of inspections and group meetings.

CONCLUSIONS

In the future, software engineering groups will
increasingly be required to deliver quality
products on time and for their planned costs.
Engineers will have to learn how to measure the

quality of their work and how to use these
measures to produce essentially defect free work.
The aim of PSP is to provide software engineers
with disciplined methods for improving personal
software development processes. It is designed
in such that it shall provide the disciplined
practices software professionals will need in the
future. It will help the software engineers to
improve their estimating and planning skills and
make commitments they can keep apart from
managing the quality of their projects.

 The PSP is designed for use with any
programming language or design methodology
and it can be used for most aspects of software
work, including writing requirements, running
tests, defining processes, and repairing defects.
When engineers use the PSP, the recommended
process goal is to produce zero defect products
on schedule and within planned costs. When
used with the Team Software Process (TSP), the
PSP has been effective in helping engineers
achieve this objective. The Personal Software
Process, or PSP, is a flexible historical data-
driven process tailored to teaching individuals
about their own unique programming styles and
even helps software engineers further develop
their skills in writing quality software with few
defects.

REFERENCES

Boehm, B. (1981). Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall.

Fagan, M. (1976). Design and Code Inspections to
Reduce Errors in Program Development. IBM
Systems Journal 15:3.

Fagan, M. (1986). Advances in Software Inspections.
IEEE Transactions on Software Engineering, SE-
12:7.

Humphrey, W. (1989). Managing the Software
Process. Reading, MA: Addison-Wesley.

Humphrey, W. (1998). The Software Quality Index,
Software Quality Professional.

Humphrey, W. (2002). Winning with Software: An
Executive Strategy. Addison-Wesley, Boston.

Humphrey, W. (2005). PSP: A Self-Improvement
Process for Software Engineers. Addison-Wesley,
Upper Saddle River, NJ.

Paulk, M., Curtis, B., Chrissis, M. B. (1995). Capability
Maturity Model for Software, Version 1.1 Pittsburgh,
Pa. Software Engineering Institute, Carnegie Mellon
University.

Pressman, R. (1992). Software Engineering: A
Practitioner’s Approach. NewYork: McGraw-Hill.

