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Abstract Article Information

A drug is a chemical substance used in the diagnosis, treatment or prevention of disease
or as a component of a medication, should be specific and freedom from side affect.
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important pathogenic bacterium is Aeromonas species which causes tissue damage,
acute gastroenteritis and neonatal septicemia. Bacterial proteins are the ultimate target to
inhibit their growth and these are the executors of cellular function. In related to this we
selected four such different proteins Flavohemo protein, Guanylate kinase,
Topoisomerase and Oligopeptidase found to be present in both humans and Aeromonas
to study the effects of antibiotics through in silico approaches. An attempt has been made
to classify the inhibitors as host protein inhibitors or guest protein inhibitors. Finally we
conclude that the molecule Agkl5 (2-morpholin-4-yl-thianthren-1-ylpyron-4-one) shown

Aeromonas species

Host

Guest

Guanylate kinase Docking

Protein Inhibitors

good inhibition with minimum binding energy -9.30, docking energy -10.03, inhibition
constant 1.53e-007 and RMS 0.0 against Aeromonas Guanylate kinase [Aeromonas:
Modelled] when compared to human Guanylate kinase [PDB ID: 1KJD]. So Agkl5 was
predicted as a good antibiotic against Aeromonas Species.
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INTRODUCTION

A drug, is any substance that, when absorbed into the
body of a living organism, alters normal bodily function. In
the field of pharmacology, a drug can be defined as a
chemical substance used in the treatment, cure or
prevention of disease otherwise used to enhance physical
or mental well-being. Drugs must be not only effective but
safe; side-effects can range from minor to dangerous.

Humans have been Figurehting against bacterial
pathogens for many decades. Since, then humans have
been utilizing various chemical substances with
antibacterial or bacteriostatic properties. In the past 50
years, borrowing anti-bacterials from other bacteria and
fungi even produced an impression of success in this
battle (Galperin et al., 1999).

The bactericidal antibiotic killing mechanisms are
currently attributed to the class-specific drug-target
interactions. Current antimicrobial therapies, which cover
a wide array of targets, fall into two general categories:
bactericidal drugs-which kill bacteria with an efficiency of
>99.9% and bacteriostatic drugs- which merely inhibit
growth (Michael et al., 2007).

Bacteria belonging to Aeromonas species have been
identified as common enteric pathogens from several

countries. They cause acute gastroenteritis of both adults
and children’s, ranging from watery to blood diarrhoea of
either short or prolonged (over 2 weeks) duration. In
mammals, Aeromonas species causes neonatal
septicemia (Bharath and Manjunatha, 2013). They occur
widely in the environment, especially in water. They are
found in both raw and chlorinated water supplies (Kudinha
et al., 2004).

Aeromonas hydrophila, Aeromonas caviae, and
Aeromonas sobria are all considered to be “opportunistic
pathogens,” meaning they only infect hosts with
weakened immune responses. Because of Aeromonas
hydrophila’s structure, it is very toxic to many organisms.
When it enters the body of its victim, it travels through the
bloodstream to the first available organ. It produces
Aerolysin Cytotoxic Enterotoxin (ACT), a toxin that can
cause tissue damage (Chopra et al., 2000). Though
Aeromonas hydrophila is considered a pathogenic
bacterium, scientists not been able to prove that it is the
actual cause of some of the diseases it is associated with.
It is believed that this bacterium aids in the infection of
diseases, but do not cause the diseases themselves.

Foods have been implicated in the transmission of
Aeromonas species. Motile Aeromonas have been
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isolated from fresh foods of animal origin. The
microorganism has the potential to be a food borne
pathogens. The disease spectrum associated with these
microorganisms includes gastroenteritis, Septicemia,
aquatic wound infections (Kudinha et al., 2004).

Proteins are the ultimate executors of cellular function,
and thus are directly responsible for a biological
phenotype (Anderson et al., 2002). Proteomics is the
study of the expression, modification and activity of
proteins in order to better understand a biological system.
Diseased (or drug treated lysates) are identically
processed and comparative analysis performed to
evaluate protein expression between the two samples
(Aebersold et al., 2003). So in the present study, we
selected four different proteins present in both Aeromonas
and human system they are Guanylate Kinase protein,
Oligopeptidase protein, Flavohemoprotein and
Topoisomerase protein by functional analysis we will
come to know that whether the proteins are orthologs or
not using molecular docking studies as the force field is
based on the concept of residue- residue contact
energies. Reduced structures can be translated to atomic
resolution, and further evaluated (Andrzej et al., 2003).

MATERIALS AND METHODS

Sequence, structure and domain analysis was
performed to predict the efficacy of inhibitor molecules
against proteins. Protein sets were downloaded by Integr8
database and protein families were studied in Interpro,
and then BLAST was performed for protein sequences
against PDB to verify about the availability of structural
information. BLAST and Genius clustalW tools were
employed for sequence analysis. Structure analysis was
performed using PDB database and protein homology
modeling was achieved in Swiss modeler and validated
through ADIT validation server by plotting Ramachandran
plot for some proteins whose structural information was
not available in PDB, Topmatch server was used for
protein superimposition. Domain analysis was performed
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for all the proteins using Prosite server. Molecular docking
studies were done using AutoDock v3.0 for known
inhibitors downloaded from PubChem against selected
proteins. An attempt has been made to classify the
inhibitors as human protein inhibitors or Aeromonas
protein inhibitors.

RESULTS AND DISCUSSION

From the integr8, we have downloaded the proteomic
sets of human and bacteria. Interpro IDs From that
proteome set were taken and submitted for Interpro,
which shows the protein family, out of them we have
selected four families and cross referenced with Pfam
database for confirmation and selected four below
showed in Table 1. The protein sequences for Guanylate
kinase, Oligopeptidase, Flavohemoprotein and DNA
Topoisomerase with a Uniprot ID’s AOKEC4, AOKEG4,
AOKG18 and A5UCC4 respectively in FASTA format were
collected and subjected for sequence analysis.

Table 1: The Pfam IDs for four proteins

Protein Pfam ID
Guanylate kinase PF00625
Oligopeptidase A PF01432
Flavohemoprotein ~ PF00175
Topoisomerase PF00204

Sequence Analysis

psi-BLAST was performed for Flavohemoprotein,
Guanylate kinase, Topoisomerase and Oligopeptidase
protein sequences in FASTA format against non-
redundant database, and the sequences from different
species from Human to bacteria were selected from the
obtained hits (Stephen et al.,, 1997). The Multiple
Sequence Alignment was performed for the selected
sequences using T-coffee to analyze the conserved
regions (Figure 1-4).
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Figure 1: Flavohemoprotein.
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Figure 2: Guanylate kinase.
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Figure 3: Topoisomerase.

The BLAST against Non-Redundant Database was
performed for the FASTA sequences, numbers of hits for
same protein were obtained, we have selected these
sequences from different species and the FASTA
sequences were downloaded. For downloaded sequences
we performed Multiple Sequence Alignment using Genius

Pro. (Figure 1-4). Here conserved regions among
Aeromonas, Human and other species were analyzed, by
this MSA we can say that the proteins both in Human and
Bacteria performs same functions due to the conservation
of the particular amino acid residues in their motifs.
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Figure 4: Oligopeptidase.
Domain Analysis 5b) at 701™ to 880™ residue and 81™ to 261" residue

Domain analysis of these four proteins was done using  respectively, this indicates the domain shifting. Human
PROSITE server. Here domains of Aeromonas protein are  guanylate kinase was observed with five more domains
compared with the domains of human proteins. The  such as PROTEIN KINASE_OOM, two L27 domains, PDZ
domain hits obtained for Human guanylate kinase protein and 3H3 domains which were not seen on Aeromonas
and Aeromonas Guanylate kinase sequences were  sequence (Laurent et al., 2002).
observed with Guanylate Kinase_2 domain (Figure 5a and
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Figure 5a: Human Guanylate kinase.
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Figure 5b: Aeromonas Guanylate kinase
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Similarly Oligopeptidase sequences were submitted
and domain hits were obtained only for human sequence,
no hits were found for bacterial sequence, and here we
failed to observe the domain similarity between human
and bacterial sequences. Neutral zinc metallopeptidases,
zinc-binding region was observed on Human sequence as
shown in Figure 6.

Domain analysis of Flavohemoprotein has received
single hit corresponding the pattern for electron transfer
flavoprotein beta-subunit on Human sequence and two

1 10y 200 pelel]
ruler:

hits by patterns: [1 hit (by 1 pattern) on 1 sequence]

Sci. Technol. Arts Res. )., April-June 2014, 3(2): 47-62

hits by two distinct profiles namely Globin and FAD_FR on
Aeromonas sequence as shown in Figure 7a and b.

In Topoisomerase domain analysis we observed the
DNA topoisomerase Il domain having eight amino acids
length on both the sequences Figure: 8a and 8b, on
Human sequence we observed the domain from 539"
residue to 547" residue and on Aeromonas sequence the
domain was from 416" residue to 424" residue. Here also
we can observe the domain shifting as shown in Figure 8a
and 8b.
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Figure 6: Human Oligopeptidase.
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Figure 7a: Human Flavohemoprotein
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Figure 7b: Aeromonas Flavohemoprotein.
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Structural Analysis

By domain analysis, we came to know the changes in
domain composition that may lead to the structural
differences. So we performed structural analysis for all the
4 proteins. For structural analysis we have collected the
structures of proteins from PDB Table 1. We performed
homology modeling using online modeling server Swiss
model by taking E. coli structures as a template (Figure
9). The modeled structures were validated by
ramachandran plot given by ADIT we can say that our
models are good. The numbers of residues in favored
region were 92.0%, 91.4% and 92.1% for
Flavohemoprotein, Guanylate kinase and Topoisomerase
respectively (Denis et al., 2002).

For structural similarity studies between Human and
Aeromonas Protein structural superimposition was
performed. The RMS values are 2.4, 3.3, 2.6 and 2.5 for
Flavohemoprotein, Guanylate kinase, Topoisomerase and
Oligopeptidase respectively as shown in Table 2. The
modeled proteien structures were subjected for active
pocket prediction, for PDB structures we referred ligplot
provided by PDB only and for designed models castP
server was used, the amino acids in active pockets are
tabulated in Table 3. Even there is no complete structural
similarity, domain similarity the proteins performing the
same function in human and Aeromonas (Joe et al.,
2006). This led us for species specific targeting and an
attempt was made to illustrate the targeting results by
performing molecular docking studies.

The protein structures of Aeromonas were
superimposed against human protein structures using
TOPMATCH server, and also RMS value is documented
in Table 2 and we can observe the super imposition in the
Figure 10. The active pockets on our PDB structures were
identified by referring their ligplot and for designed models
we used castP server.

Sci. Technol. Arts Res. )., April-June 2014, 3(2): 47-62
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(631 aa)

Figure 9: The protein structures of A: Aeromonas
Flavohemoprotien, B: Human Flavohemoprotien, C:
Aeromonas Guanylate kinase, D: Human Guanylate
kinase, E: Aeromonas DNA Topoisomerase, F:
Human DNA Topoisomerase, G: Aeromonas
Oligopeptidase, H: Human DNA Oligopeptidase

Table 2: Structure superimposition using TopMatch.

SI.No Protein Name Bacterial PDB ID Human PDB ID RMS Value
1. Flavohemoprotein Modeled 1EFV 2.4
2. Guanylate kinase Modeled 1KGD 3.3
3. DNA Topoisomerase Modeled 1ZXM 2.6
4. Oligopeptidase 2DEA 1S4B 25
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Table 3: Amino Acids in Active pocket.

N Protein Name

PDB ID

Active Pocket

Active pocket

amino acids

Aeromonas
Flavohemoprotein

Modeled

VAL-1, ALA-2, TYR-4, LYS-6, ASN-7, ALA-13, LEU-14, ALA-17, VAL-
18, ARG-20, ILE-21, LYS-24, HIS-25, GLY-27, PHE-28, LEU-29, ILE-
30, GLN-31, GLN-34, TYR-35, VAL-38, HIS-41, LEU-42, THR-45, LEU-
46, LEU-49, TRP-62, ALA-65, TYR-66, LEU-69, ALA-70, PHE-73,
SER-94, GLU-105, ILE-109, SER-111, TYR-130, SER-132, LYS-134,
GLN-143, GLU-144, ILE-145, ARG-146, GLN-147, TYR-148, SER-149,
ASP-152, ARG-160, SER-162, VAL-163, LYS-164, GLU-166, PRO-
167, GLN-168, GLY-169, GLN-170, VAL-171, SER-172, VAL-187,
MET-188, ALA-209, GLY-210, VAL-211, GLY-212, ILE-213, THR-214,
PRO-215, MET-217, SER-218, HIS-236, ALA-237, CYS-238, GLU-239,
GLN-240, ALA-242, VAL-243, HIS-244, ALA-245, PHE-246, ARG-247,
TYR-266, ARG-267, THR-284, GLY-304, PRO-305, VAL-306, PHE-
308, MET-309, GLN-310, LYS-313, GLN-314, ILE-317, ALA-323, TYR-
328, GLU-329, VAL-330, PHE-331, GLY-332.

97

Human
Flavohemoprotein

1EFV

ASN-132, ALA-126, ASP-129, ASN39, CYS-42, GLY-123, ALA-9, THR-
134, GLN-133, CYS-66

10

Aeromonas
Guanylate kinase

Modeled

SER-27, SER-28, PRO-29, SER-30, GLY-31, LYS-34, SER-35, LEU-
38, ASN-39, LEU-42, HIS-45, SER-47, MET-51, GLN-52, LEU-53,
SER-54, VAL-55, SER-56, HIS-57, ARG-60, ARG-63, PRO-64, VAL-70,
HIS-71, TYR-72, HIS-73, GLU-91, ALA-93, VAL-95, PHE-96, ASN-98,
TYR-100, GLY-101, THR-102, SER-103, ALA-106, ILE-107, CYS-110,
ILE-115, VAL-117, LEU-119, ASP-120, ILE-121, ASP-122, GLY-125,
ARG-151, LEU-152, ILE-153, GLY-154, ARG-155, GLY-156, GLN-157,
ASP-158, ARG-166, LYS-169, ALA-170, GLU-173.

57

Human Guanylate
kinase

1KGD

GLU-802, GLY-812, TYR-811

Aeromonas
Topoisomerase

Modeled

ASP-2, GLN-3, SER-4, LEU-5, GLU-6, VAL-7, ILE-8, ASP-9, ASP-10,
GLY-11, ARG-12, GLY-13, MET-14, PRO-15, HIS-19, GLY-26, LEU-29,
ILE-30, ALA-36, GLY-37, GLY-38, LYS-39, PHE-40, LYS-43, ASN-44,
TYR-45, PHE-47, SER-48, GLY-49, GLY-50, LEU-51, HIS-52, GLY-53,
VLA-54, GLY-55, ILE-56, SER-57, VAL-58, VAL-59, LEU-62, SER-63,
ARG-72, THR-103, ARG-104, VAL-105, ARG-106, PHE-107, PRO-109,
PHE-114, ASP-115, SER-116, PRO-117, ARG-118, PHE-119, SER-
120, VAL-121, SER-122, LYS-123, LEU-124, HIS-126, LEU-127, LEU-
128, ALA-130, LYS-131, ALA-132, CYS-135, LEU-138, THR-139, ILE-
140, LYS-141, PHE-142, LEU-143, ASP-144, LYS-145, ASN-146, THR-
147, GLU-201, TYR-207, ASN-209, LEU-210, ILE-211, PRO-212, ALA-
214, LYS-263, GLN-272, THR-273, LYS-274, GLU-275

87

Human
Topoisomerase

1516

ARG-162, LYS-378, ASN-163, GLN-376, ASN-150, SER-148, ASN-91,
SER-149, LYS-168, ALA-167, GLY-166, GLY-164, TYR-165, ASN-120.

14

Aeromonas
Oligopeptidase

2DEA

TYR-218.

Human
Oligopeptidase

1S4B

HIS-473, HIS-477, GLU-502.

human 1EFV h.pdb (564 aa) ::Model_1_FH.pdb (332 aa)

Figure 10: The super imposition protein structure from Aeromonas and Humans A: Flavohemoprotien, B: Guanylate
kinase, C: DNA Topoisomerase, D: Oligopeptidase
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Molecular Docking Studies

The inhibitors of all the four proteins were downloaded
from pubchem data base, name, structure ID, structure
and LogP of all the inhibitors subjected for docking are
tabulated in Table 4, 5, 6 and 7 for Flavohemoprotein

Sci. Technol. Arts Res. )., April-June 2014, 3(2): 47-62

inhibitors, Guanylate kinase inhibitors, Topoisomerase
inhibitors and Oligopeptidase inhibitors respectively
(Rajesh et al., 2013). Flavohemoprotein inhibitors (4 and
8) and Oligopeptidase inhibitors (4 and 8) have not
docked successfully.

Table 4: Flavohemoprotein Inhibitors

Mol. No  Name of Structure  Structure ID Structure Log P value
/
—N
_ \

1 Venlafaxine CID_5656 ° 2.9

HO

1-[2-(dimethylamino)-1-(4-methoxyphenyl)ethyl]cyclohexan-1-ol
[e)

O)J\TH

2 Carbaril CID_6129 CO 2.4
naphthalen-1-yl N-methylcarbamate
/
N
. X OH
3 Galanthamine CID_9651 | 1.8
0 H
_—0
5 Femoxetine CID_43103 4.0
/o—(: :)—o N\
3-[(4-methoxyphenoxy)methyl]-1-methyl-4-phenylpiperidine
O"\O
6 Paroxetine CID_43815 3.5
(35,4R)-3-(l‘3-benzodioxoI-5»y|oxymethy|)-4-(4-:Iuorophenyl)piperidine
7 \
~
7 Lipstene CID_44668 C>I N 3.3
NH
HN
3-(2-piperidin-4-ylethyl)-1H-indole

9 Flesinoxan CID_57347 a i anlINH 2.0

cl

(IR,4R)-4-(3,4-dichlorophenyl)-N-methyl-1,2,3 4-tetrahydronaphthalen-1-amine
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Table 5: Guanylate kinase inhibitor.

Mol. No  Name of Structure Structure ID Structure Log P value
(0]
OO
N* N =
1 Nicorandil CID_47528 | H 0.8
O \
N
2-(pyridine-3-carbonylamino)ethyl nitrate
0
HN—%
1yds; H-8 ©
2 dihydrochloride CID_3540 \ / 0.6
HN\ N
N-[2-(methylamino)ethyl]isoquinoline-5-sulfonamide
/- {
PP1 cpd; tyrosine
3 kinase inhibitor PP1 CID_10125426 N \A{ 2.2
/N
HN
7-tert-butyl-5-(4-methylphenyl)-6H-pyrazolo[3,4-d]pyrimidin-4-amine
S
\ I N—
Pyrazolo[1,5- — 0
4 AlPyrimidine 3g CID_5329468 /> < > \ 3.2
N
X/
6-(4-methoxyphenyl)-3-thiophen-3-ylpyrazolo[1,5-a]pyrimidine
o/\’
I\/N ©
/
. _ o /
5 Nchembio 63 CID_5278396 3.9
Comp3 -
S
gy

2-morpholin-4-yl-6-thianthren-1-ylpyran-4-one

In the Molecular docking study of Flavohemoprotein
inhibitors against Human and Aeromonas
Flavohemoprotein, the inhibitor Hfhl9 showed minimum
docking energy, binding energy, inhibition constant and
0.92 RMS value with Human Flavohemoprotein (Figure
11). The same molecule named Afhl9 showed minimum
docking energy, binding energy, inhibition constant and
0.0 RMS value against Aeromonas Flavohemoprotein but
less when compare with Hfhl9. The Afhl7 shown good
results than other Aeromonas protein inhibitors (Figure
12). This kind of inhibitors cannot use as an antibacterial
drugs. The minimum binding energy, docking energy,
Inhibition constant and RMS value are tabulated in Table
8and 9.

Molecular docking study of Guanylate kinase inhibitors
against Human and Aeromonas Guanylate kinase showed
that the inhibitor Hgkl5 showed minimum docking energy,
binding energy, inhibition constant and 0.0 RMS value
with Human Guanylate kinase protein (Figure 13). The
same molecule named Agkl5 showed minimum docking
energy, binding energy, inhibition constant and 0.0 RMS
value against Aeromonas Guanylate kinase but less when
compare with Hgkl5. The Agkl5 inhibitor showed good
results than Hgkl5 (Figure.14). This kind of inhibitors can
use as an antibacterial drugs. The minimum binding
energy, docking energy, Inhibition constant and RMS
value are tabulated in Table 10 and 11.
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Table 6: Topoisomerase inhibitors

Mol. No Name of Structure  Structure ID Structure Log P value
N/\ F
(A
jo)
[
1 Levofloxacin CID_149096 N Y o -0.4
o
\H
8-Fluoro-3-methyl-9-(4-methyl-piperazin-1-yl)-6-oxo0-2,3-dihy
dro-6H-1-oxa-3a-aza-phenalene-5-carbox
ylic acid
2 Nalidixic acid CiD_4421 1.4
1-ethyl-7-methyl-4-0xo-1,8-naphthyridine-3-carboxylic acid
NH;
"
T
F N
CID_62959 &
3 Trovafloxacin - — 0.3
N—— F
OH
7-[(1R,5S)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]-1-(2,4-
difluorophenyl)-6-fluoro-4-oxo-1,8-naphthyridine-3-carboxylic acid
0 0
F
Ho
® ‘
4 Ciprofloxacin CID_2764 N/w 1.1
1-cyclopropyl-6-fluoro-A-oxo--piperazin-1-ylquinoline-3-carboxylic acid
In the Molecular docking study of Topoisomerase Eventually the molecular docking study of

inhibitors against Human and Aeromonas Topoisomerase,
the inhibitor Htopl4 showed minimum docking energy,
binding energy, inhibition constant and 0.0 RMS value
with  Human Topoisomerase (Figure 15). The same
molecule named Atopl4 showed minimum docking
energy, binding energy, inhibition constant and 0.0 RMS
value against Aeromonas Topoisomerase but less when
compare with Htopl4. The Atopl3 shown good results than
other Aeromonas protein inhibitors (Figure 16). This kind
of inhibitors cannot use as an antibacterial drugs. The
minimum binding energy, docking energy, Inhibition
constant and RMS value are tabulated in Table 12 and
13.

Oligopeptidase inhibitors against Human and Aeromonas
Oligopeptidase was performed, here also the inhibitor
Hopl1l showed minimum docking energy, binding energy,
inhibition constant and 0.0 RMS value with Human
Oligopeptidase (Figure 17). The same molecule named
Aopll showed minimum docking energy, binding energy,
inhibition constant and 0.0 RMS value against Aeromonas
Oligopeptidase but less when compare with Hopll. The
Aopll shown good results than other Aeromonas protein
inhibitors (Figure 18). This kind of inhibitors cannot use as
an antibacterial drugs. The minimum binding energy,
docking energy, Inhibition constant and RMS value are
tabulated in Table 14 and 15.
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Table 7: Oligopeptidase inhibitor.

Mol. No  Name of Structure  Structure ID Structure Log P value
cl
N
N
1 Amoxapine CID_2170 . 2.6
-
8-chloro-6-piperazin-1-ylbenzo[b][1,5]benzoxazepine
—_\ (o]
e}
HO.
NH 0 ©
2 Cilazapril CID_2751 é /“E 0.6
N
9-[(1-ethoxy-1-ox0-4-phenylbutan-2-yl)amino]-10-oxo-
1,2,3,4,6,7,8,9-octahydropyridazino[1,2-a]diazepine-1-carboxylic
O [
3 Nitalapram CID_2771 \ 3.2
/N
N
1-[3-(dimethylamino)propy!]-1-(4-fluorophenyl)-3H-2-benzofuran-5-carbonitrile
ll/li
5 Cymbalta CID_60835 4.3
(3S)-N-methyl-3-naphthalen-1-yloxy-3-thiophen-2-ylpropan-1-amine
o
S
6 Duloxetine CID_122252 " 4.3
N
~
N-methyl-3-naphthalen-1-yloxy-3-thiophen-2-ylpropan-1-amine
F
[o]
7 Escitalopram CID_146570 \ 3.2
N
/
%N
(1S)-1-[3-(dimethylamino)propy!]-1-(4-fluorophenyl)-3H-2-benzofuran-5-carbonitrile
9 Citalopram CID_6101829 3.2

(1R)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-3H-2-benzofuran-5-carbonitrile
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Figure 11: Graph showing binding energy and Docking energy of an inhibitors with both Human and Aeromonas
Flavohemoprotein.

Figure 12: Docking of flavohemoprotein with the ligand flesinoxan, Top three corresponds to Aeromonas and Bottom
three corresponds to human.

Table 8: Docking results for Aeromonas Flavohemoprotein (modeled protein)
Molecule number Binding energy  Docking energy Inhibition Constant RMS

Afhl1l -5.31 -6.13 0.000127 0.37
AfhI2 -5.01 -5.92 0.000213 0.91
AfhI3 -7.16 -7.26 5.62e-006 0.1
AfhI5 -7.01 -8.39 7.25e-006 0.0
Afhl6 -5.75 -6.72 6.12e-005 151
Afhl7 -7.9 -9.05 1.61e-006 0.0
AfhI9 -5.23 -7.97 0.000146 0.0

Table 9: Docking results for Human Flavohemoprotein (1EFV)

Molecule number  Binding energy Docking energy Inhibition Constant RMS

Hfhil -8.14 -8.74 1.07e-006 0.37
Hfhi2 -8.21 -9.11 9.66e-007 0.0
HfhI3 -10.74 -10.88 1.34e-008 0.05
HfhI5 -8.04 -8.15 1.29e-006 0.0
Hfhi6 -10.27 -10.24 2.95e-008 1.72
HfhI7 -9.9 -11.01 5.54e-008 0.73
HfhI9 -11.4 -13.28 4.42e-009 0.92
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Figure 13: Graph showing binding energy and docking energy of an inhibitors with both Human and Aeromonas
Guanylate kinase proteins.
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Figure 14: Docking of guanylate kinase with the ligand Nchembio.63-Comp3, Top three corresponds to Aeromonas and
Bottom three corresponds to human Docking results.

Table 10: Docking results for Aeromonas Guanylate kinase (Modeled).

Molecule number  Binding energy  Docking energy Inhibition Constant RMS

Agkll -6.50 -8.43 1.71e-005 0.0
Agkl2 -6.46 -8.35 1.84e-005 0.0
AgklI3 -8.51 -8.42 5.78e-007 0.0
Agkla -7.58 -8.12 2.76e-006 0.0
Agkl5 -9.30 -10.03 1.53e-007 0.0

Table 11: Docking results for Human Guanylate kinase (1KGD).

Molecule number  Binding energy  Docking energy Inhibition Constant RMS

Hgkll -5.18 -7.04 0.000159 0.0
Hgkl2 -7.42 -8.95 3.65e-006 0.0
Hgkl3 -8.87 -8.75 3.17e-007 0.0
Hgkl4 -6.65 -7.21 1.33e-005 0.0
HgkI5 -8.13 -8.93 1.10e-006 0.0
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Figure 15: Graph showing Binding energy and Docking energy of an inhibitors with both Human and Aeromonas
Topoisomerase proteins.

J 7 TVl Uk
Figure 16: Docking of DNA Topoisomerase with the ligand Ciprofloxacin, Top three corresponds to Aeromonas and
Bottom three corresponds to human.

Table 12: Docking results for Aeromonas Topoisomerase (Modeled)

Molecule number Binding energy  Docking energy Inhibition Constant RMS

Atopll -9.24 -9.87 1.69e-007 0.0
Atopl2 -7.4 -8.08 3.73e-006 0.0
Atopl3 -9.49 -10.70 1.11e-007 0.84
Atopl4 -8.90 -9.91 2.98e-007 0.0

Table 13: Docking results for Human Topoisomerase (1S16)

Molecule number  Binding energy Docking energy  Inhibition Constant RMS

Htopll -10.88 -11.47 1.05e-008 0.05
Htopl2 -10.49 -10.83 2.05e-008 0.0
Htopl3 -9.97 -9.48 4.88e-008 0.72
Htopl4 -13.14 -13.97 2.35e-010 0.0
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Figure 17: Graph showing Binding energy and docking energy of an inhibitors with both Human and Aeromonas
Oligopeptidase proteins.
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Figure 18: Docking of Oligopeptidase with the ligand Citalopram, Top three corresponds to Aeromonas and Bottom
three corresponds to human.

Table 14: Docking results for Aeromonas Oligopeptidase (2DEA)

Molecule number  Binding energy  Docking energy Inhibition Constant RMS

Aopll -8.74 -9.06 3.94e-007 0.0
Aopl2 -4.88 -8.67 0.000266 0.0
Aopl3 -6.77 -8.08 1.1e-005 0.0
Aopl5 -6.08 -9.30 9.81e-006 0.0
Aopl6 -7.04 -9.34 6.97e-006 0.0
Aopl7 -6.56 -8.49 1.54e-005 0.0
Aopl9 -4.87 -8.59 0.000267 0.0

Table 15: Docking results for Human Oligopeptidase (2DEA)

Molecule number  Binding energy  Docking energy Inhibition Constant RMS

Hopll -9.39 -9.98 1.48e-007 0.0
Hopl2 -6.50 -9.17 1.73e-005 0.0
Hopl3 -8.45 -9.62 6.41e-007 0.0
Hopl5 -6.91 -9.19 8.55e-006 0.0
Hopl6 -7.78 -9.29 1.99e-006 0.0
Hopl7 -6.71 -10.23 1.21e-005 0.0
Hopl9 -8.23 -9.37 9.34e-007 0.0
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CONCLUSIONS

By the sequence analysis, structural analysis, and
functional analysis of the four proteins taken from the
human and bacteria, we have performed the docking
studies by taking the inhibitors for four proteins. These
inhibitors showed good docking energy with human
proteins than Aeromonas hydrophila proteins which
mediates neonatal septicemia, gastroenteritis and aquatic
wound infections in mammals. Thus, we conclude that
the taken inhibitors cannot be used as antibiotics, but the
Agkl5 inhibitor showed good results than Hgkl5, this kind
of inhibitors can be use as antibacterial drugs.
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