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Abstract  Article Information 
Depth Duration Frequency (DDF) relationships are currently constructed based on at site 
frequency analysis of rainfall data separately for different durations. These relationships are 
not accurate and reliable since they depend on assumptions such as distribution selection for 
each duration; they require a large number of parameters, experience intensive equations 
and regionalization is also very poor and coarse. In this study, scaling properties of extreme 
rainfall depth series were examined to establish scaling behavior of statistical moments and 
quantile estimates over different durations. The annual extreme series of precipitation 
maxima for storm duration ranging from 0.5 to 24 hr observed at network of rain gauges sited 
in Oromia regional state were analyzed using an approach based on moments. The analysis 
investigated the statistical properties of rainfall extremes and detected that the statistics of the 
rainfall extremes follows a power law relation with its duration. Moreover, the variations of the 
distribution parameters with durations of annual maximum rainfall depth series were explored 
and found that the logEV1, EV1 and logistic distribution parameters exhibit a power law 
relationship with durations. Following the analysis, scale invariance of extreme rainfall depth 
series is investigated and dissipative (multiple scaling) nature of extreme rainfall depth series 
is considered, thus introducing a general distribution free framework to develop Depth 
Duration frequency (DDF) model.  
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INTRODUCTION 

The scaling or scale-invariant models enable us to 
transform data from one temporal or spatial model to 
another one and thus, help us to overcome the difficulty of 
inadequate data. Therefore, investigation of scaling 
property of extreme rainfall depth series can provide 
comprehensive statistical description of the rainfall depth-
duration-frequency relationships. A natural process fulfills 
the simple scaling property if the underlying probability 
distribution of some physical measurements at one scale 
is identical to the distribution at another scale multiplied by 
a factor that is a power function of the ratio of the two 
scales. A random rainfall depth series with duration D, 
R(D) exhibits a simple scale invariance behavior if: 

 

      )()( DIDI
d

   holds.                                             (1) 

The equality  
d

   refers to identical probability 

distributions in both sides of the equations;  denotes a 

scale factor and  is a scaling exponent. Strict sense 
simple scaling property asserts that the probability 
distributions of extreme rainfall depth series at various 
durations are scale invariance. Further relaxing this 
preposition, a wide sense simple scaling extends the 
scale invariant property to quantiles and moments of the 

extreme rainfall depth series. According to a wide sense 
simple scaling property, the quantile of extreme rainfall 
depth series is given by: 
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                                        (2) 

 

If we take the 1 hr annual maximum rainfall depth as 
reference duration, the scale factor (λ=D/1) would be 
equal to the duration of the extreme rainfall depth at 
consideration. Therefore, the quantile of the extreme 
rainfall depth that obeys the wide sense simple scaling 
property could be given by: 

 

 )1()( TT hDDh                                 (3) 
 

The distribution function used to explain the 1-hr 
duration extreme rainfall depth series determines the form 
of the quantile function in Equation (3). Assuming the 
scaling exponent is independent of recurrence interval, 
the row moments and probability weighted moments of 
the extreme rainfall depth series at order q can be 
respectively given as 

         DIEDIE qq
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q                                                   (4) 
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Where the E   is expected values operator, q is the 

moment order and  is a scale factor and M1, q, 0 is the 
probability weighted moment of order q. The random field 
I(D) exhibits a simple scale invariants in a wide sense if 
the above equation holds. As already shown in many  
literatures , further manipulations on the moments in the 
above equation (4) and (5) implies that the dimensionless 
central moments(coefficient of variation, coefficient of 
skewness, coefficient of kurtosis) and the corresponding 
dimensionless L-moment ratios of extreme rainfall depth 
series which exhibits wide sense simple scaling property 
are independent of duration. 

 
Suppose the wide sense simple scaling holds for 

duration in the range DX  D DY and D be reference 
duration within this range.  

 
The reference duration could be the time scale at 

which the reference rainfall is measured. If the scale 

factor is defined as =D/D, then the quantiles of extreme 
rainfall depth series in equation (2) can be expressed as 
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Similar power relationships can be deduced from the 
row moments and probability weighted moments of 
extreme rainfall depth series as, respectively 
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MATERIALS AND METHODS 

 Description of the Study Area 

The study area selected for the study was Oromia 
regional state which is located between 3

0
N to

 
10.5

0
N 

latitude and 34
0
E to 43

0
E longitude. It covers an area of 

353,690 km
2
 and accounts for 32% of the country 

(population and housing census commission report, 
1994).  Based on figures from the Central Statistical 
Agency of Ethiopia (CSA) published in 2005, Oromia has 
an estimated total population of 26,553,000. The regional 
state of Oromia borders Afar and Amhara regional states 
in the north, Kenya in the south, the regional state of 
Somali in the east, and the Republic of Sudan and the 
regional state of Benishangul in the west, and the regional 
states of Southern Nations and Gambela in the south. 

 

Figure 1: Location of the study area. 
 

Material Used 

The materials used for this research were; 
 Hourly rainfall data 
 Arc GIS to locate the station and delineate the study 

area  
 Spreadsheet/MS Excel 2003 for data analysis and 

graphical distribution fitting 
 Easy fit software for distribution fitting and parameter 

estimation 
 
Methodology 

It is obvious that a random sample of rainfall data is 
required prior to the implementation of frequency analysis. 
The random sample often is an annual maximum series of 
total rainfall depth with respect to a pre-specified duration 
(D). Before data collection begins, the pre-specified 
durations, also known as design duration, are artificially 
designated  which are used to determine the 
corresponding annual maximum rainfall depth in contrast 
to event durations which are actual raining periods of time 
of real storm events.  The design duration selected for this 
study was 0.5, 1, 2, 3, 5, 6 and 24 hr. From the data base 
of 55 stations, annual maximum rainfall depth series from 
1978 to 2012 having 32 years length was obtained by 
employing fixed duration technique at each stations in the 
study area which involves a continuous moving of a 
window of size D(duration) along the time axis and 
selecting the maximum total rainfall values with in the 
window in each year. After the necessary data were 
collected, missing rain fall data’s were filled and also the 
collected data series for all stations were checked for 
consistency, using double mass curve method. The data 
were also tested for independence and stationarity by a 
fortran programme based on lag-one serial correlation 
coefficient test and Wald-Wolfowitz(W-W)  respectively.  
Statistical analysis based on product moments and 
probability weighted moments was employed to 
summarize the extreme rainfall data series and to 
investigate the scaling properties of extreme rainfall depth 
series in the study region and its efficiency was tested 
against quantile estimate from logEV1 distribution, 
observed hourly rainfall depth and empirical IDF estimates 
previously developed for the region.  
 

RESULT AND DISCUSSION 

Statistical Analysis of Extreme Rainfall Depth Series  

Rainfall statistics of Oromia Regional State were 
computed using both conventional moments and L-
moment methods. However, L-moment is a powerful and 
efficient method to compute any statistical parameters, 
because such methods can give unbiased estimate of 
sample parameters and also cannot be easily influenced 
with the presence of outliers (Rao & Hamed, 2000). 
Generally, the statistical parameters computed include 
mean, standard deviation, coefficient of variation/L-
coefficient of variation, coefficient of skewness/L-
coefficient of skewness, and coefficient of kurtosis/L-
coefficient of kurtosis. 
 
Conventional Moments 

Moments about the origin or about the mean are used 
to characterize probability distributions. Moments about 
the origin are the expected values of powers of random 
variables. For distribution with a probability density 
function f(x), the r

th
 moment about the origin is given by: 

,)(,
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The central moments μ are computed by:
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                                    (10) 

Sample moments 
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 are given by:                                  
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These sample moments are often biased and may be 

corrected (cunnane, 1989) 
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The conventional moment ratios are defined as: 
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Where: CV – Coefficient of variation; Cs - coefficient of 
skewness and Ck – Coefficient of kurtosis 
 
L-moments 

L-moments are analogous to conventional moments 
but are estimated by linear combination of an ordered 
data set, namely L-statistics (Rao & Hamed, 2000).  Like 
ordinary product moments, L-moment summarizes the 
characteristics or shape of theoretical probability 
distributions and observed samples.  Both moment types 
offer measures of distributional location (mean), scale 
(variance), skewness (symmetric shape), and kurtosis 
(flatness). L-moment offer significant advantages over 
ordinary product moments because of the following 
reasons: 
 L-moment ratio estimators of location, scale, and 

shape are nearly unbiased, regardless of the 
probability distribution from which the observations 
arise (Hosking 1990); 

 L-moment ratio estimators of L-Cv and L-skew do not 
have bound which depend on a sample size as do the 
ordinary product moment ratio estimators of CV and C-
skew (Kirby, 1974); 

 L-moment ratio estimators such as L-Cv, L-skew, and 
L-Kurtosis can exhibit lower bias than conventional 
product moment ratio especially for highly skewed 
samples; and 

 L-moment ratio diagrams are particularly good at 
identifying the distributional properties of highly 
skewed data, whereas ordinary product moments 
diagrams are almost useless for this task (Vogel and 
Fennessey, 1993). 
 

Probability weighted moments (PWMs) introduced by 
Greenwood et al. (1979) are linear function of L-moments. 
Accordingly, PWMs are defined as: 

 

  r

r XFXE )(  
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Where F=F(X) is the cumulative distribution 
function(CDF) for X, X(F) is the inverse CDF of X 
evaluated at the probability F and r=1, 2, 3, …is a non 

negative integer. Where r=0, o is equal to the mean of 

the distribution =EX 
 

For any distribution the r
th

 L-moment r is related to the 
r
th

 (PWM) (Hosking, 1990) via; 
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Moreover the first four L-moments are related to the 
PWMs using  

               1= 0 

          2 =21 -  0         

                        3 =62 - 61 + 0 

     4 = 203 - 302  + 121 - 0 

 

Hosking (1990) defined the L-moment ratio as follows: 

Lcv= 122    

L-skew= 233    

L-kurtosis= 244  
 

 

L-moment ratio diagrams can be used to compare 
sample estimates of the dimensionless L-moments ratios 
with their theoretical counterparts. The sample product 
moments and L-moment ratio statistics were estimated 
from the annual maximum rainfall depth series at all 
stations and also from their logarithmic transformations. 
To compute these parameters, spread-sheet (Excel), was 
used. These parameters were plotted against their time 
scale for each station and the result confirmed that the 
statistics varies with duration at all station for both product 
moments and L-moments (Figure 2, 3 and 4). Later on, 
these statistics are very important for the selection of the 
distribution and investigating the scaling property of 
maximum rainfall depth series in the study region. More 
over no specific trend or relation were obtained between 
the statistics of extreme rainfall depth series and 
elevation. The random variation of the statistics with 
elevation and its spatial variation over the study region are 
observed from the statistics versus elevation plot (Figure 
4) and map of L-statistics (Figure 5) respectively.  
 

 
Figure 2: the L-moment ratio (L-coefficient of variation) of 

maximum rainfall depth series at various 
durations for sample stations representing 
different climatic regions in the study area. 

 

L-coefficient of Skwness for stations representing different 

climatic regins in the study region.
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Figure 3: The L-moment ratio (L-coefficient of skewness) 

of maximum rainfall depth series at various 
durations for sample stations representing 
different climatic regions in the study area 

 

 
Figure 4: The L-moment ratio (L-coefficient of Kurtosis) of 

maximum rainfall depth series at various 
durations for sample stations representing 
different climatic regions in the study area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Maps of 0.5hr and 24hr L-statistics in the study area 
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Investigating the Scaling Property of Extreme Rainfall 
Depth Series 

The scaling property of rainfall in the study region was 
investigated by computing the moments of extreme 
rainfall depth series and then by examining the log-log 
plots of the moments against their duration. The analysis 
was performed on annual maximum rainfall depth series 
for storm duration from 0.5hr to 24hr rainfall at all stations. 
The logarithmic plots of the row moments and the 
probability weighted moments versus duration for different 
moment orders at all stations confirmed the existence of 

power law scaling. For illustration purpose, both the 
product (conventional) moments and linear moments of 
extreme rainfall depth series is plotted against their 
duration in (Figure 6 )for Addis Ababa station. This 
confirms the existence of power law scaling which 
indicates scaling is applicable in the study region.  
Therefore, the scaling exponent can be estimated from 
either the row moments or from the probability weighted 
moments of the extreme rainfall depth series at various 
durations in the study region.  

 

 
(a)      (b) 

Figure 6: Plot of PWM moments (a) and product moments (b) at Addis Ababa station 
 

Moreover, simple scaling and multi-scaling properties 
are also deducted in terms of statistical moments. In order 
to determine if the data follows simple scaling or multi-
scaling, the scaling exponent was plotted versus the 
moment order. As illustrated in Figure 7, the scaling 
exponent decreases with the moment order at all stations 

in the study area; and there exists a non-linear 
relationship between scaling exponent and order of 
moments. This observation is against the hypothesis of 
simple scaling theory, and therefore it implies that the 
property of wide sense simple scaling property of extreme 
rainfall depth series does not obeyed in the study region.  

 

 

Figure 7: Plot of the scaling exponent versus moment orders of extreme rainfall depth series for sample stations 

representing different climatic regions 
 

Moreover, the dimensionless central moments 
(coefficient of variation, skewness, and kurtosis) and the 
corresponding L-moment ratios of extreme rainfall depth 
series were drawn and plotted against their duration for all 
stations. The result shows that dimensionless moment 
ratios vary with duration for all stations which is against 
the deduction of wide sense simple scaling theory. 
Therefore, statistical investigation revealed that the rainfall 
exhibits multi-scaling property at all stations. The variation 

of scaling exponent with moment order (Figure 7) may 
arise from the dependence of scaling exponent on the 
recurrence interval or duration.  In order to investigate the 
interactions between scaling exponent and recurrence 
interval, the scaling exponent of annual rainfall depth at all 
ranks of ascending order at each station were estimated 
from the scaling quantile relationship of extreme rainfall 
depth series.  The EV1 reduced variate, which is a 
function of recurrence interval, corresponding to the 
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the variation of scaling exponent with recurrence interval at diferent stations
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scaling exponent of each rank of annual rainfall depth was 
determined from plotting position formula of the ranked 
extreme rainfall depth series at each station. The variation 
of scaling exponent with reduced variate is against the 
deductions of the simple scaling theory that reveals the 
deviation of the property of the extreme rainfall depth 
series in the study region from simple scaling behavior as 
shown in Figure 8.  

 
Moreover, as already explained the dimensionless 

statistics of extreme rainfall depth series are significantly 
varies with duration. The variation of scaling exponent 

with moment order (Figure 7) and recurrence interval 
(Figure 8) revealed that the annual maximum rainfall 
depth series are rather exhibiting a wide sense multiple 
scaling behavior. As already stated in many literatures the 
quantile function for extreme rainfall depth series 
exhibiting multiple scaling is given by; 
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  Where D is the scale at which reference rainfall is 
measured. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Variation of scaling exponent with EV1 reduced variate 

 
The variation of distribution parameter with durations 

of annual maximum rainfall depth series are explored for 
three parameter Log-logistic, two parameter log-logistic, 
logistic, generalized extreme value, logEV1 and EV1 
distributions at fifty five stations in the study region. The 
method of maximum likelihood is applied for parameter 
estimation at all stations and for all duration. Graphical 
evaluation shows that no relationship is observed 

between the parameter of Log-logistic three parameter 
distributions and its duration at all stations. All the three 
parameters (shape, scale and location) parameters are 
not related to duration (Figure 9). Regarding the two 
parameter log-logistic distribution, its location parameter 
exhibits strong power law relation with duration but its 
scale parameter is not related to duration rather it is more 
or less constant across duration at all stations. 

 

  
Figure 9: Parameter versus duration plot for three parameter log-logistic distribution 

 

  
Figure 10: Plot of parameters versus duration for two parameter log-logistic distribution. 
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In the case of generalized extreme value distribution, 
location parameter exhibited strong relation with duration 
and scale parameter weakly related to duration while 

shape parameter did not exhibit power law relation with 
duration for all stations in the study region. (Figure 11). 

 

 
Figure 11: Plot of parameters versus duration for generalized extreme value distribution 

  
The EV1, Logistic and logEV1 distribution parameters 

exhibited power law relationships with duration for all 
stations. Sample result for few station is shown in figures 
12, 13 and 14 respectively. 

 

 
Figure 12: Plot of parameters versus duration for EV1 distribution 

 

  
Figure 13: Plot of parameter versus duration for logistic distribution 

 

 
Figure 14: Plot of parameter versus duration for logEV1 distribution 
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logEV1 distribution functions revealed that the parameter- 
duration scaling properties of extreme rainfall depth series 
may be explained by these distributions. However the 

statistical summary of the extreme rainfall depth series 
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hypothesis of extreme events following logistic distribution 
which have a theoretical skewness coefficient of zero. 
Therefore further investigation will be undertaken on EV1 
and logEV1 distributions. 
 

The dependence of EV1 parameters on the duration of 
the annual maximum rainfall depth series can be 
expressed as: 

 D  and        
 D                                           (20)                                                                                        

  

Where   and  are respectively location and scale 

parameters for EV1 distribution.   , , ,  are 
coefficients ;whose coefficients and goodness of fit 
measures for fifty five stations in the study region are 
given below.  

 

Table 1: The coefficients and goodness of fit criteria of parameter-duration relationship for EV1 distribution 
 

Stations 
 Coefficients and efficiency    

 Location,   Scale,   

  R2    R2 

Abomsa 26.579 0.118 0.86  6.8805 0.3111 0.9412 
Adama 24.003 0.1614 0.96  7.0646 0.1844 0.7656 
Addiss Abeba 25.071 0.1409 0.9526  5.5413 0.1579 0.865 
Agaro 21.246 0.1657 0.8508  6.1186 0.129 0.4944 
Ambo 15.705 0.2131 0.9425  4.1894 0.2471 0.9064 
Arisi Adele 19.176 0.1578 0.9648  5.358 0.2081 0.7071 
Arisi Robe 26.243 0.104 0.9813  9.4232 0.1315 0.5147 
Arjo 27.928 0.2119 0.851  5.5016 0.3708 0.8112 
Asossa 25.771 0.1919 0.8741  6.3347 0.068 0.165 
Awassa 32.495 0.0848 0.8835  9.4763 0.1413 0.652 
Ayira 30.807 0.2029 0.9512  7.7986 0.1986 0.7986 
Bale-Robe 22.552 0.1256 0.7919  5.1869 0.2305 0.9276 
Bedelle 27.249 0.1533 0.9735  4.6733 0.2078 0.906 
Bekoji 28.711 0.1117 0.7974  9.3539 0.1038 0.5427 
Ciroo 26.218 0.2114 0.9682  8.2872 0.3293 0.9768 
Debre-Brehan 19.077 0.1898 0.9872  5.3943 0.2101 0.9198 
Debre-Markos 23.392 0.1403 0.9245  8.467 0.2329 0.7014 
Deder 25.705 0.1462 0.911  7.3769 0.2556 0.915 
Degehabour 26.533 0.0869 0.9694  8.6101 0.0642 0.5739 
Dembi-Dolo 26.208 0.1239 0.8162  4.5672 0.1511 0.6912 
Didessa 26.125 0.1372 0.8872  8.5058 0.1562 0.8308 
Dilla 31.337 0.1435 0.959  8.3743 0.1953 0.9414 
Diredewa 24.044 0.0981 0.8763  5.6389 0.0796 0.4163 
Fiche 26.925 0.1579 0.9567  6.0113 0.1291 0.7675 
Garba-Guracha 29.052 0.0577 0.9728  3.5241 -0.0298 0.1564 
Gelemso 26.039 0.1042 0.8331  9.1497 0.1776 0.7686 
Gewane 29.459 0.2108 0.8785  7.9754 0.0761 0.1096 
Gimbi 23.425 0.1161 0.8278  6.1998 0.3776 0.9148 
Ginnir 19.354 0.1759 0.9446  6.076 0.0607 0.2179 
Goba 29.935 0.0945 0.9335  6.8904 0.1214 0.8585 
Gore 21.61 0.1837 0.9015  5.1043 0.2151 0.7683 
Harere-Mariam 29.655 0.129 0.9488  7.6495 -0.0335 0.3271 
Haramaye 22.533 0.1498 0.8088  4.7438 0.1969 0.7855 
Hunte 29.132 0.123 0.7848  4.834 0.155 0.6809 
Hurso 26.854 0.1758 0.9098  7.4831 0.1486 0.8738 
Humuru 22.639 0.1677 0.9299  3.9335 0.2827 0.795 
Ijaji 27.797 0.1494 0.9684  5.3341 0.1158 0.7037 
Jimma 27.404 0.1426 0.9047  5.0903 0.0194 0.0974 
Kachisse 26.061 0.1036 0.9258  5.4836 0.0747 0.8367 
Konso 23.367 0.11 0.7337  7.814 0.2083 0.8246 
Kulumsa 20.649 0.1437 0.9358  6.8723 0.2672 0.901 
Mega 24.056 0.1433 0.8392  7.6233 0.0137 0.137 
Methehara 24.585 0.1684 0.9782  7.7455 0.1487 0.6884 
Mierab-Abaya 27.209 0.0549 0.8955  9.3078 0.1611 0.7722 
Miesso 29.103 0.1669 0.8781  7.0868 0.0659 0.2269 
Moyalle 27.064 0.0829 0.7617  5.0343 0.1545 0.7182 
Negelle 27.058 0.1931 0.9845  6.613 0.2236 0.7284 
Shambu 20.015 0.2553 0.9453  7.2554 0.2478 0.8521 
Sinana 28.437 0.1314 0.9294  6.4445 0.0462 0.4517 
Sokoru 18.869 0.0965 0.8109  6.2187 0.125 0.7318 
Yabello 23.783 0.1421 0.9046  7.378 0.2013 0.9185 
Zeway 23.818 0.1246 0.9149  7.4279 0.245 0.9258 

More over the semi-log plot in figure 14 revealed that the 
logEV1 distribution parameters are also related to the 
durations of extreme rainfall depth series at all stations.  

 

The relationships between extreme rainfall durations 
and the locations and scale parameters of logEV1 
distribution can be expressed respectively as 

 

)log(  D   and   )log(  D                                        (21) 
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where;  and  are location and scale parameters of 

logEV1 distribution and , , ,  are coefficients whose 

coefficient and goodness of fit measures at all stations are 
given below 

  
Table 1: The coefficients and goodness of fit criteria of parameter-duration relationships for logEV1 distribution. 

 

 
Coefficients and Efficiency 

 
Location,                                                      Scale,  

 
Stations   R2    R2 

Abomsa 1.4314 0.0262 0.8641  0.1086 0.0917 0.6047 
Adama 1.374 0.0459 0.9445  0.0853 -0.2809 0.8403 
Addiss Abeba 1.3865 0.0417 0.9438  0.0885 0.0272 0.5146 
Agaro 1.2989 0.075 0.9569  0.1079 -0.1062 0.5261 
Ambo 1.1755 0.0763 0.9146  0.1301 -0.1432 0.4734 
Arisi Adele 1.3925 0.053 0.6841  0.1353 -0.0282 0.6177 
Arisi Robe 1.4386 0.0588 0.804  0.0707 0.1724 0.7735 
Arjo 1.4386 0.0588 0.81  0.0707 0.1724 0.74 
Asosa 1.3937 0.0566 0.88  0.0991 0.0899 0.61 
Awassa 1.4856 0.0207 0.36  0.1128 0.0652 0.21 
Ayira 1.4699 0.0641 0.93  0.1023 0.0726 0.52 
Bale-Robe 1.3399 0.0419 0.77  0.0895 0.0237 0.47 
Bedelle 1.4335 0.0462 0.87  0.0696 0.0244 0.27 
“Bishoftu 1.3497 0.0414 0.81  0.1284 0.0139 0.87 
Bekoji 1.4396 0.0359 0.77  0.1166 -0.05 0.73 
Ciroo 1.4052 0.0576 0.94  0.1111 0.1175 0.83 
Deder 1.4179 0.0416 0.76  0.101 0.0564 0.52 
Dembi-Dolo 1.4033 0.0396 0.79  0.0765 0.0259 0.54 
Fiche 1.5358 0.0245 0.84  0.0848 0.0715 0.51 
Garba-Guracha 1.4567 0.0171 0.96  0.0636 -0.1505 0.76 
Gelemso 1.3978 0.032 0.96  0.0936 -0.0622 0.67 
Gimbi 1.4478 0.0602 0.88  0.1106 -0.098 0.48 
Ginnir 1.3604 0.0338 0.7761  0.0936 0.1869 0.9712 
Goba 1.2609 0.0617 0.927  0.1296 -0.1663 0.605 
Gore 1.47 0.0311 0.7384  0.0926 -0.1251 0.755 
Hagere-Mariam 1.318 0.058 0.0884  0.0941 0.0146 0.0327 
Haramaye 1.4614 0.0394 0.9409  0.09931 0.1682 0.9658 
Hunte 1.3353 0.0501 0.7817  0.0881 0.0188 0.5503 
Humuru 1.4191 0.0521 0.8922  0.0997 -0.097 0.5773 
Ijaji 1.3476 0.0521 0.9138  0.0682 0.0615 0.6461 
Jimma 1.4339 0.0441 0.9634  0.0829 -0.0854 0.8175 
Kachisse 1.4269 0.042 0.8875  0.0766 -0.0916 0.6731 
Kulumsa 1.335 0.0419 0.6413  0.1299 -0.0147 0.417 
Mega 1.2786 0.0468 0.9344  0.1416 0.0558 0.5219 
Methehara 1.3666 0.046 0.8087  0.1083 -0.1072 0.7649 
Mirab-Abaya 1.3716 0.0508 0.9801  0.1408 -0.1153 0.7257 
Miesso 1.421 0.015 0.8681  0.1157 0.0824 0.5883 
Moyalle 1.4499 0.0501 0.8724  0.0957 -0.0938 0.5258 
Negelle 1.4284 0.0248 0.7289  0.0685 0.0554 0.2583 
Nedjo 1.4035 0.0594 0.9386  0.0751 1366 0.719 
Shambu 1.4263 0.0541 0.9751  0.0853 0.0463 0.2127 
Sinana 1.2666 0.0863 0.9073  0.1396 -0.0662 0.5946 
Sokoru 1.445 0.0381 0.9076  0.0841 -0.0547 0.6691 
Wolliso 1.3893 0.0656 0.7955  0.0678 -0.2076 0.5866 
Yabello 1.2585 0.0364 0.7614  0.1177 -0.0278 0.1072 
Zeway 1.3542 0.0343 0.8808 

 
0.1198 0.11 0.9376 

 
Moreover, the quantile function of the annual 

maximum rainfall depth series can be expressed in terms 
of its duration and recurrence interval by substituting the 
parameter-duration relationships into the inverse of 
cumulative distribution function.  Recall that for EV1 
distribution the inverse distribution function (quantile 
function) is given by: 

 

        TT yDh  )(                                                           (22) 

 where Ty  is EV1 reduced vitiate and   and   are 
location and scale parameters respectively. Accordingly, 
direct substitution of parameter duration relationship (20) 
in to EV1 quantile function (22) gives complete description 
of the EV1 quantile function give by; 
 

       TT yDDDh   )(                                              (23)                                                    

Similarly, after substitutions and algebraic 
manipulations the complete description of the quantile 
functions of the logEV1 distribution can be expressed as: 

 

          
TyyT

T Dh
 


                                              (24) 

 
The quantile functions (23 and 24) are often referred to 

as the rainfall depth duration frequency relationships. The 
power law dependence of the distribution parameters and 
quantiles on the durations of extreme rainfall depth series 
shows that the extreme rainfall depth series exhibit 
scaling property with respect to the duration of 
occurrence. Recall also that the statistical investigation of 
extreme rainfall depth series confirms the multi scaling 
property of the rainfall depth series in the study region. 
While the rainfall depth duration frequency relationships 
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derived from multiple scaling behavior (equation 19) is 
very similar to the quantile function of the logEV1 
distribution (equation 24), that derived from simple scaling 
property (6) has identical features with the quantile 
function of the EV1 distribution (equation 23).  Therefore, 
the logEV1 distribution is the most appropriate frequency 
distribution for extreme rainfall depth series that exhibits 
multiple scaling properties. 

 

 CONCLUSIONS 

 One of the objectives of this study was to investigate 
the scaling properties of extreme rainfall depth series in 
the study region. The collected extreme rainfall depth 
series data were checked for consistency using mass 
curve analysis method; Test for independence were made 
by Fortran program based on (W-W) test; and the 
independency and consistency of the extreme rainfall 
depth series were confirmed. The study summarized the 
statistical properties of extreme rainfall depth series using 
an approach based on ordinary and L-moments, and 
detected important relationship between these statistics 
and durations of extreme rainfall depth series. The 
investigation revealed that the statistics of rainfall 
extremes vary systematically with duration. This variation 
of the statistics of rainfall extremes were used to 
investigate the scaling properties of the extreme rainfall 
depth series in the study region. The variation of 
distribution parameters with durations of annual maximum 
rainfall depth series were explored for different 
distributions. From the result it was confirmed that the 
EV1, logEV1 and logistic distribution parameters exhibited 
power law relationships with duration. Similar 
relationships were also obtained for location and scale 
parameters of GEV distribution while the shape parameter 
of GEV distribution was not related to the duration of 
extreme rainfall depth series. For the rest of the 
distribution functions tested in the region, power law 
relation did not exist. Furthermore from the logarithmic 
plots of ordinary moments and probability weighted 
moments versus duration for different moment orders at 
all stations, it was confirmed that power law scaling has 
existed.  
 

From this, it was found out that the property of the time 
scale invariance of extreme rainfall quantiles in the study 
region follow a multiple scaling property. It was also found 
out that the investigated property of the extreme rainfall 
depth series has significant practical importance, because 
statistical extreme rainfall inference can be made to 
further develop a Depth Duration Frequency model that 
robustly explains the rainfall depth duration frequency 
relationship in the study region.  
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