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Abstract  Article Information 

The characteristics and energy of a system in an eigenvalue problem can be 

approximated through different mathematical formalisms, so as we have preferred 

and employed the Nikiforov-Uvarov formalism to solve for the Mie potential. The 

energy spectrum is calculated numerically and exposed to external magnetic field 

intensity, temperature, and AB flux intensity considering material parameters 

GaAs quantum dot (antidot) confined in Mie potential. The magnetic field and AB 

flux intensity affect additional confinement potential, which plays a great role in 

tuning the potential model fit to different applicability and enhances the study of 

different properties of the system. In our study, we investigated energy spectrum 

dependence on the repulsive radius, applied magnetic field, AB flux intensity, and 

rovibrational state to enhance the energy spectrum over dominating the potential 

confinement, and however, the effect of temperature is governed by the form of 

confinement potential in maintaining the attractive and repulsive phases. The 

energy spectrum is highly influenced by the presence of a repulsive anti-dot radius 

due to electron-electron interactions in the systems. 
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INTRODUCTION 
 

The precise binding energy state value of the 

SE in scientific studies plays a notable role in 

quantum mechanics (Oyewumi, 2008). 

Intensive attention has been given by many 

researchers for many decades to solving SE 

through different approaches to approximate 

the precise possible results due to its 

multidimensional importance for enhancing 

the energy eigenvalue and wave function 

simultaneously. The difficulties made by 

intricate N-dimensional SE have been 

separately solved by different scholars with its 

unique algebraic expression by its value in D-

dimensionality. The N-dimensional pseudo-

harmonic oscillator was discussed by 

Oyewumi et al. (2008). Investigation of 3D 

harmonic oscillators has elevated a significant 

aggregate intellectual curiosity due to its 
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considerable scientific meaning in the 

structural behaviour of physical phenomena 

(Sever, 2007; Macke, 1961; Weissman, 1979). 

     Other potential systems researchers usually 

experience in physical chemistry have a well-

known Kratzer potential. In addition, it is 

applicable for the depiction of the structures of 

molecular features in quantum mechanics 

(Sadeghi, 2007). It plays a significant role as a 

long-range attractive and short-range repulsive 

play in providing the existence as a part of 

structural interactions that elucidate the 

Kratzer potential in validating terms of its 

rovibrational ground state energy (LeRoy, 

1970) (Bayrak, 2007). The Kratzer potential 

tends to infinity as the distance between intra-

molecules is agitated to become nearer to each 

other. As a result, the potential value tends to 

zero; this is due to the existence of a repulsion 

force between the molecules. That is why 

intra-molecular space tends to increase; then, 

the potential value decays (Edet, 2020; 

Hassanabadi, 2012). It has been found that the 

Kratzer potential is actually appropriate for 

the portraiture of molecular features and 

interactions between two nuclei of atoms 

(Ikot, 2019; Hajigeorgiou, 2006; Durmus, 

2007). The NU method was protracted for 

scientific communities by admirable scholars. 

Nikiforov and Uvarov established 

mathematical formalism, which enabled 

researchers to apply their sophisticated 

mechanisms to solve the reliable solution of 

SE based on reduced SODEs changing into 

linear differential equations. 

      It is newly fashioned that the state of being 

of external fields used to explore almost all 

physical properties of low-dimensional 

systems has accepted great remark both 

theoretically and experimentally. Thus, 

intensive attention has to be given to the 

newly emerging as the main subject of study 

that has to be taken into great consideration 

since it is the groundwork for technological 

development. Meanwhile, scientific 

communities are imposed to deal with 

artificial atoms (QDs) as low-dimensional 

systems. That opens a window to revealing 

many physical properties, like optical, 

thermal, magnetic, and electrical, of materials 

that have been the focus of extensive 

theoretical studies. It also required more effort 

in order to contribute to revealing and 

exploring capabilities in their applications in 

nanodevices and nanotechnological 

development. The analysis of the energy 

eigenvalues of artificial atoms is key to 

probing the physical properties of the system 

as a whole. Thus, applying an external 

magnetic field is virtually equivalent to 

announcing a supplementary binding potential 

that alters the electron or hole’s transport and 

optical properties. 

 Mathematical methods  

       The Nikiforov-Uvarov method 

Recently, the NU formalism has made it 

simpler to solve SE for many recognised 

potentials. The reduction principle has to be 

applicable for linear forms of mathematical 

equations with a reliable algebraic expression 

in mapping s = s(r); therefore, it can be given 

as follows: 

 
𝜕2𝜓

𝜕𝑠2 (𝑠) =
𝜏(𝑠)

𝜎(𝑠)

𝜕𝜓

𝜕𝑠
(𝑠) +

�̃�

𝜎2 𝜓(𝑠) = 0                                      

(1) 



 

 

 

G.G. Alemu et al                                                   Sci. Technol. Arts Res. J., Oct. - Dec. 2019, 8(4), 14-28 

 
 A Peer-reviewed Official International Journal of Wollega University, Ethiopia                         
 

Since 𝛼(s)=
τ(𝑠)

𝜎(𝑠)
 and 𝛽(s)=

σ̃(𝑠)

𝜎2(𝑠)
 in equation(1) 𝜎(𝑠) 

and �̃�(s)  both are polynomials at most second 

degree while �̃�(s) is at most first degree. The wave 

function is represented as a component of two 

separable parts, 

𝜓(𝑠) = 𝜑(𝑠)𝑦(𝑠)                                               (2) 

And equation 

𝜎(𝑠)𝑦(s) + τ(s)
𝜕𝜓

𝜕𝑠
(s) + λy(s)

= 0                                                 (3) 

And  

𝜎(𝑠) = 𝜋(𝑠)
𝑑

𝑑𝑠
(𝑙𝑛(𝜑(𝑠)))                                  (4) 

And  

𝜏(𝑠)
= τ̃(𝑠) + 2𝜋(𝑠)                                                       (5) 

𝜆 is defined as 

𝜆𝑛 + 𝑛𝜏′ +
[𝑛(𝑛 − 1)]𝜎"

2
= 0                                                 (6) 

One can describe 𝜋(𝑠) and 𝜎(𝑠) as follows 

𝑘 = 𝜆 − 𝜋 ′(𝑠)                                                        (7) 

Quadratic solution of equation (4) and (5) in tem 

of 𝜋(𝑠)can be given as: 

𝜋(𝑠)

=
(𝜎 ′ − τ̃)

2
± √(

𝜎 ′ − τ̃

2
)

2

− σ̃ + 𝑘𝜎             (8) 

Equation (8) 𝜋(𝑠)   is used to justify 1st degree of 

polynomial function, so the mathematical terms 

subjected to the square root could be justified as 

the solution of first degree of Polynomial Square. 

Thus it is evitable if and only if   (
𝜎′−�̃�

2
)2 − �̃̃� +

𝑘𝜎 = 0. Following the decision made on value of 

k, we can obtain 𝜋(𝑠), 𝜏(𝑠) and 𝜓(𝑠). 

Additionally, from equation (4) one can relate with 

the Rodrigues form as: 

𝑦𝑛(𝑠)

=
𝑑𝑛

𝜌(𝑠)

𝑑𝑛

𝑑𝜌𝑛
𝜎𝑛(𝑠)𝜎(𝑠)                                       (9) 

Since  𝑐𝑛   is defined as constant magnitude and 

the weight function shows good agreement with 

following form of equation:  

(𝜎(𝑠)𝜌(𝑠))′

= 𝜏(𝑠)𝜌(𝑠)                                                                (10) 

Where  

𝜑′(𝑠)

𝜑(𝑠)
=

𝜋(𝑠)

𝜎(𝑠)
                                                          (11) 

Eigenvalues of the Mie-Type Potential under 

external fields 

Diatomic confinement, trapped in Mie potential, 

had been studied through Nikiforov-Uvarov 

formalism (Nikiforov & Uvarove, 1988). 

      Polynomial approaches (Ikhdair, S. M., 2008) 

and mathematical assumptions of wave function 

were studied (Hamzavi, 2011). Generally, one can 

describe the Mie-type potential as reduced to the 

Coulombic-potential type. It had been investigated 

taking into account D dimensions using the 

polynomial solution and assumed to be the state 

function formalisms with standard Morse (Morse, 

1929). The Mie-type potentials account for a 2D 

single electron, e, with an effective mass, 

interacting via a radially in proportionate 

arrangement dot (electron) and antidot (hole) 

exposed to external a uniform magnetic field, and 

assumed internal synthetically impact of solenoid 

as additional magnetic force emerged due to 

electron motion as it is known an AB flux field 

that possibly put its own impact simultaneously. 

Thus, SE can be taken as a reference (Ikhdair, S. 

M. 2008) 
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[
1

2𝜇
(𝑝 +

𝑒

𝑐
𝐴)

2

+ 𝑉𝑐𝑜𝑛𝑓(𝑠)] 𝜓(𝑟, 𝜑)

= 𝐸𝜓(𝑠, 𝜑)                              (12) 

Since, E is the ground energy state, first term of 

equation (12) is kinetic energy and 𝑉𝑐𝑜𝑛𝑓 is Mie 

potential interaction defined by 

𝑉(𝑟) = 𝑉0 [
1

2
(

𝑟0

2
)

2

−
𝑟0

𝑟
]                                       (13) 

Since  𝑟0 is the central radius, and 𝑉0 is the ground 

characteristics energy   moreover, the vector 

potential 𝐴 exhibited as a totality of two possible 

terms i.e.,𝐴 = 𝐴1 + 𝐴1 = (
𝐵𝑟

2
+

𝛷𝐴𝐵

2𝜋
) 𝜑 having the 

azimuthal components. 

Equation of 2D cylindrical the wave functions is 

given as: 

𝜓(𝑟, 𝜑) =
1

√2𝜋
𝑒𝑥𝑝(𝑖𝑚𝜑)𝑔(𝑟)                         (14) 

Where m =0,±1, ±2, … such that m indicates the 

orbital orientation. Plugging equation   (14) into 

equation   (12) , one can obtain the equation that 

satisfying g(r) 

𝑑2

𝑑𝑟2
+

2

𝑟

𝑑

𝑑𝑟
+

1

𝑟2
(𝜖2𝑟2 − 𝛽𝑟

− 𝛾)𝑅𝑛,𝑚(𝑟)                      (15) 

Defining parameters in equation (15) 

𝜖 =
2𝜇𝑉0

ℏ2𝑟0
2

+ (
𝜇𝜔𝑐

2ℏ
)

2

                                         (16𝑎) 

𝛽 =
2𝜇𝑉0

ℏ2
(𝐸 + 𝑉0) −

𝜇𝜔𝑐

ℏ
(𝑚 + 𝛼)               (16𝑏) 

𝛾 = (𝑚 + 𝛼)2 + 𝑎2                                             (16𝑐) 

Where 𝛼 =
𝛷𝐴𝐵

𝛷0
 with the flux quantum𝛷0 =

ℏ𝑐

𝑒
, 

𝜔𝑐 =
𝑒𝐵

𝜇𝑐
 is the resonance of electron that gyrates 

around applied magnetic fields  and 𝑎 = 𝑘𝐹𝑟0  

with  𝑘𝐹 = √
2𝜇𝑉0

ℏ2     is radius of Fermi sphere. The 

orbital quantum number m relates to the quantum 

number 𝛽 in equation (16b) 

From equation (15) it is obviously known, that τ̃ =
2, σ̃ = 𝜖2𝑟2 − 𝛽𝑟 − 𝛾.  we find 𝜋(𝑟) as is the 

𝜎(𝑟)  coefficient of first order derivatives. 

𝜋(𝑟)

=
−1

2

± {
𝑖𝜖𝑟 +

1

2
√4𝛾 + 1, 𝑓𝑜𝑟 ∧ 𝑘1 = −𝛽 + 𝜖√−1 − 4𝛾

𝑖𝜖𝑟 −
1

2
√4𝛾 + 1, 𝑓𝑜𝑟 ∧ 𝑘2 = −𝛽 − 𝜖√−1 − 4𝛾

   (17) 

and 𝜏(𝑟) mathematically justified as:  

𝜏(𝑟)

=
−1

2

± {
1 + 𝑖2𝜖𝑟 + √4𝛾 + 1, 𝑓𝑜𝑟 ∧ 𝑘1 = −𝛽 + 𝜖√−1 − 4𝛾

1 + 2𝑖𝜖𝑟 + √4𝛾 + 1, 𝑓𝑜𝑟 ∧ 𝑘2 = −𝛽 − 𝜖√−1 − 4𝛾
  (18) 

It provides fittest result if and only if  𝜏′(𝑟) < 0 , 

so as one can apply: 

 𝑘2 = −𝛽 − 𝜖√−1 − 4𝛾, 𝜋2 =
−1

2
− 𝑖𝜖𝑟 −

1

2
√1 + 4𝛾  and 𝜏(𝑟) = 1 − 2𝑖𝜖𝑟 + √1 + 4𝛾 for 

having energy state and state functions we use 

equation (6) and (7) 

𝐸𝑛,𝑚+𝛼 = ℏ𝜔𝑐 (2𝑛 + 1 + √(𝑚 + 𝛼)2 + 𝑎2)

+
ℏ𝜔𝑐

2
(𝑚 + 𝛼)

−
2𝜇𝑉0

2𝑟0
2

ℏ2
(𝑛 +

1

2

+ √(𝑚 + 𝛼)2 + 𝑎2)
−2

          (19) 
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Assuming external magnetic field (𝐵 = 0) and AB 

flux intensity  (𝛼 = 0) , one can acquire the 

following: 

𝐸𝑛,𝑚 =
−2𝜇𝑉0

2𝑟0
2

ℏ2
(𝑛 +

1

2

+ √(𝑚)2 + 𝑎2)
−2

         (20) 

The 3D vibrational solutions for energy spectrum 

in the case of a character experienced by Mie 

potential is acquired by setting;( 𝑚 = ℓ +
1

2
 ) 

Where ℓ is the rotational quantum number to 

obtained from reference  (Ikhdair S.M, 2015)  

𝐸𝑛,ℓ =
−2𝜇𝑉0

2𝑟0
2

ℏ2
(𝑛 +

1

2

+ √(ℓ +
1

2
)

2

+ 𝑎2)

−2

(21) 

Equation (21), as justified in reference 

(Berkdemir, 2006), has a similarity with Mie 

molecular potential. Indisputably, it requires a 

reliable change in the input variables, and thus the 

rotational energy eigenvalue for any atom, 

electron, or electron could be computed through 

NU formalism. In this paper, we computed the 

energy eigenvalue of specifically identified 

material parameters of GaAs quantum dot 

(antidot) confined in Mie potential with and 

without external fields in 2D and 3D confinement 

potentials. 

Dependence of Temperature 

From equation established by Varshni (Aspnes, 

1976)provided experimental values for various 

semiconductors including Si, Ge, and GaAs, are 

expressed as: 

𝐸𝑔(𝑇)

= 𝐸𝑔(0) −
𝜐𝑇2

𝑇 + 𝜒
                                       (22) 

Eg(T)  is band gap in (eV) depends on the 

temperature that shows uniquely material-based 

properties. While the parametric value reveals the 

expansion of the lattice due to the effect of 

temperature in a similar pattern, the parametric 

value indicates the electron interaction within the 

lattice. On the other hand, effective mass and 

imbibing the radiant energy lower limit frequency 

with the different values of temperature as 

provided in reference (Ehrenreich, 1961), which is 

the relation. 

𝜇𝑒

𝜇(𝑇)
=

1

𝑓(𝑇)
= 1

+ 𝐸𝑝
𝛤 (

2

𝐸𝑔(𝑇)

+
1

𝐸𝑔 + 𝛥0
)                      (23) 

Where𝜇𝑒 electronic mass, 𝐸𝑝
𝛤 = 7.51𝑒𝑉 is the 

energy related to the momentum matrix element, 

𝛥0 = 0.341𝑒𝑉 is the spin-orbit splitting and 𝐸𝑝
𝛤 is 

the temperature-dependence of the energy gap (in 

eV units) at the 𝛤 point. Hence the temperature 

dependence energy spectrum formula can be 

expressed as. 

𝐸𝑛,𝑚(𝐵, 𝑇)

=
ℏ𝜔𝑐

𝑓(𝑇)
(2𝑛 + 1 + √(𝑚 + 𝛼)2 + 𝑎2𝑓(𝑇))

+
ℏ𝜔𝑐

2𝑓(𝑇)
(𝑚 + 𝛼)

−
𝑓(𝑇)𝑎2𝑉0

(𝑛 +
1
2 + √(𝑚 + 𝛼)2 + 𝑎2𝑓(𝑇))

2       (24) 
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The effective mass of material GaAs known as 

𝜇 = 0.067𝑚𝑒. We compare on temperature 

dependence in without of magnetic and AB 

flux intensity in 2D and 3D from equation 

(20) and (21) can be written:  

𝐸𝑛,𝑚 = 𝑎2𝑉0𝑓(𝑇) (𝑛 +
1

2

+ √𝑚2 + 𝑎2𝑓(𝑇))
−2

    (25) 

𝐸𝑛,𝑙

= 𝑎2𝑉0𝑓(𝑇) (𝑛 +
1

2

+ √(𝑙 +
1

2
)

2

+ 𝑎2𝑓(𝑇))

−2

              (26) 

 RESULT AND DISCUSSION  

We computed SE for confined electrons in 

different potentials, like under the Mie 

potential interaction consisting of solving the 

Schrödinger equation for an electron, the Mie 

potential confined electron in quantum dot 

(antidot) dependence on the exposure of a 

uniform magnetic field, AB flux, and 

temperature. We obtained bound state 

solutions including influences of magnetic 

field and AB flux energy spectrum from 

formula (19) and bound state energy spectrum 

without external field in 2D equation (20) and 

3D equation (21). Moreover, energy 

eigenvalue dependence on temperature is 

computed in equation (24). In the case of our 

study, we explored the dependence of the 

energy eigenvalues on external magnetic field 

intensity, temperature, and internal AB flux 

intensity. We used material parameters and 

chemical potential (V0 = 0.68549meV), r0 =

8.958 × 10−6cm.  Thus, a = √2μV0r0
2

ℏ2 ≈ 12, 

ℏω = 1.05243ℏωc and ω0 =

0.16403805ωc we obtained and taken from 

reference (Ikhdair, S.M.,2012). Furthermore, 

we revealed the dependence of the energy 

levels on temperature, taking into account 

previously determined experimental 

parameters of the material Ep
Γ = 7.51eV Thus, 

momentum matrix element, Δ0 = 0.341eV is 

the spin-orbit splitting χ = 204, and electron 

interaction within the lattice, υ =

5.405 × 10−4 is the expansion of the lattice 

due to temperature changes  (Liboff, 2003). 

We deal on the value of effective mass 

decreasesf(T)  =  µ(T)/µe due to increment 

or decrement of temperature. As a kinetic 

energy of electron decrease consequently, 

lowered the bound state energy has to be 

occurred.  As the effective mass dependence 

on temperature for GaAs pseudo dot is taken 

from reference  (Elabsy, 2000). 

Mie Potential of two electrons without 

external fields 

As it depicted in Fig. 1-3, the antidote energy 

levels in the absence of external magnetic 

field in attention was given to the effect of 

repulsive radii 2D and 3D potential is plotted.  
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Figure 1, Energy spectrum state 3D Mie potential GaAs as function the antidote repulsive radius 

for the various angular rotation momentum ( ℓ = 0, ℓ = 1, ℓ = 3) 

Fig.1 demonstrates a  relative of energy spectrum 

versus antidot repulsive radii for various l state in 

3D Mie potential ((𝑛 = 0, ℓ = 0, ℓ = 1, ℓ = 3) it 

shows bound state decreases and reaches its local 

minimum that shown as the tendency of attractive 

potential meanwhile begins to raise to its constant 

value in the same manner for (ℓ = 1) more local 

minima where observed for (ℓ = 3)  the influence 

of rotational frequency create the higher bound 

state at very low repulsive radius then tend to 

decrease into its constant as repulsive radius 

increases.  

 

 

 

 

 

 

 

Figure 2, the variation of bound energy spectrum function versus the antidote repulsive radius 

for in 2D Mie potential electron quantum (m=0). 
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In Fig.2, the finite bound energy state versus the 

repulsive radius follows the same manner as in 

Fig.1 1. Here we are investigating the influence of 

variation frequency, that is, the bound energy is 

not the quickest to merge against the repulsive 

radius, as merely rotational frequency affects the 

energy bound state, which signifies there is more 

relaxation in variations than rotational frequency. 

 

Figure 3, Energy bound state as function of repulsive radius with various (m=0, m=1, m=3) 

In fig. 3 the ground energy bound state in 2D 

psuedodot as a function of anidot radius (a 

nm) with the various values of the azimuthal 

quantum state (𝑚 = 0, 𝑚 = 1, 𝑚 = 3) the 

local minimum of energy bound state as 

repulsive potential increases the energy bound 

state merged to the same constant value due to 

its dominance over angular rotational 

frequency effects on the system. 

 

Effects of external magnetic and AB flux intensity  

 

 

 

 

 

 

 

Figure 4 Ground energy bound state (𝑛 = 0, 𝑚 = 0 ) versus magnetic field with various values 

of  the AB flux intensity (𝛼 = 2, 𝛼 = 4, 𝛼 = 6) with the repulsive radius (a=12) 
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As depicted in Fig.4 the bound energy 

spectrum versus to external magnetic field for 

different  values of  AB flux intensities in 2D 

Mie potential (α=2,α=4,α=6) it finite bound 

energy is directly proportional to the external 

magnetic field as well as AB flux intensity. 

Thus both parameters enhance rotational 

frequency that enhances energy bound state.  

 

 

 

 

 

 

 

 

 

 Figure 5 Ground bound energy state versus the magnetic field (B in tesla) with various  

            radii  (𝑎 = 1, 𝑎 = 5, 𝑎 = 10 𝑛 = 0, 𝑚 = 0 𝑎𝑛𝑑 𝛼 = 2) 

 

As depicted in Fig. 5 electron-electron 

interactions put a great impact on the 

description  of energy state as the magnetic 

field increases the bound state increases, in 

addition, repulsive radii in the antidot enhance 

the energy bound state, the higher repulsive 

radius possessed the energy bound state. 

 

Magnetic field and dependence of Temperature 

 

 

 

 

 

 

 

 

Figure 6 variation of ground energy bound state (n=0,m=0) as function of magnetic field with 

various with various temperature.(T=0, T=300 ,T=500K). 
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In Fig.6 energy bound state of GaAs quantum dot 

for repulsive radius (a=0) and AB flux intensity 

(𝛼 = 2) as it rely  on  the external magnetic field 

revealed  an increment in degeneracy, on other 

hand, one clearly  can be observed at the low 

magnetic field, almost energy bound state likely 

tends to non-degenerate. The higher temperature 

possesses the upper phase of the bound state 

energy this phenomenon is due to the 

comprehensive dominance of the magnetic field 

and AB flux intensity that put their complimentary 

effect. 

 

 

 

 

 

 

Figure 7 Ground energy bound state (n=0, m=0) as function of magnetic field with various with 

various temperature (T=0, T=300, T =500K). 

It depicted in Fig. 7, the  energy bound state of 

GaAs quantum antidot for repulsive radius (a=12) 

and AB flux intensity (𝛼 = 2) it shows agreement 

with result in reference [26] that as the magnetic 

field increases the degeneracy of the state can be 

observed clearly while at the low magnetic field. 

Here the dominant magnetic field, AB fluxes 

intensity, and repulsive radius potential over-

temperature notable physical phenomena. 

      For our comparison in the absence and 

presence of repulsive radius as depicted in figure 6 

and figure 7 the energy bound state shown in Fig.7 

is more enhanced due to the presence of repulsive 

radius potential over dominating temperature 

effect that is less degeneracy of the state is 

observed. 

                                       

  Dependence of energy eigenvalue on temperature at (B=0) 

 

 

 

 

 

 

 
 

Figure 8 Ground state 2D pseudodot (in meV) versus the repulsive radius with various value of 

temperature (T=0, T=300K, T=500K). 
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As it depicted in figure 8  the minimum bound 

state value reached at radius value radius 2nm 

that signifies attractive  phase for 𝑎 ≤ 2𝑛𝑚, 

and repulsive phase 𝑎 ≥ 2𝑛𝑚 until it reached 

its critical values depending on temperature 

values. The lower temperature possessed the 

upper bound energy value in contrary higher 

value of temperature agitate to lower bound 

state energy level.   

 

 

 

 

 

 

 

 

Figure 9 Energy bound state 2D antidot (in meV) versus a magnetic quantum number with the 

various value of temperature (T=0, T=300K, T=500K). 

In Fig. 9, the energy levels as function m 

quantum numbers(m) with various 

temperature values (T=0, T=300K, T=500K) 

in case n=0 Fig. 9 shows the parabolic bound 

energy profile it’s local minimum is found at  

(m=0)  that indicate the ground bound state 

value.  Thus in Fig 9, shows two different 

phases of the energy profile that are 

considered as attractively bound state phase 

for (𝑚 ≤ 0), and repulsive potential profile for 

(𝑚 ≥ 0). It also indicates the higher 

temperature possesses a lower bound energy 

level. 

 

 

 

 

 

 

 

Figure 10 Energy eigenvalue 3D antidot (in meV) as a function repulsive radius with various 

temperature (T=0, T=500K) 
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As shown in Fig. 10, the local minimum is 

observed at a lower radius (a≤4nm). Thus, the 

attraction phase of the electron-electron comes 

to an end at local minimum potential values 

and repulsive potential, which begins to be 

notable as repulsive potential increases until it 

reaches a critical value at which it tends to 

keep constant bound state energy even though 

the repulsive radius continuously increases. 

As it is merely temperature-dependent, the 

higher temperature possesses the lower 

energy-bound state phase. 

Figure 11 Energy eigenvalue 3D antidot (in meV) versus angular quantum number with various 

value of temperature (T=0, T=300K, T=500K). 

In Fig. 11 the energy levels as function m 

quantum numbers(m) with various 

temperature values (T=0, T=300K, T=500K) 

in case n=0 Fig. 8 shows the parabolic bound 

energy profile it’s local minimum is found at  

(-1≥ℓ≤0)  that indicate the ground bound state 

value.  Thus in Fig.11, it shows two different 

phases of energy profile that are considered as 

attractively bound state phase for (ℓ ≤0), and 

repulsive potential profile for  (ℓ ≥0). It also 

indicates the higher temperature possesses the 

lower bound energy level with the same pattern in 

the figure. 9. But in case Fig. 11 is the quickest to 

reach its maximum constant value this is due to 

the dimensionality effect of the system. 

CONCLUSIONS  

In this study, we have simulated the energy-

bound state for a quantum dot and a pseudo-

dot confined in MIE potential, considering the 

material parameters of the GaAs 

semiconductor nanostructure. Furthermore, it 

enhances further in probing the physical 

properties of the nonrelativistic atom, 

molecules, electrons, and/or holes; thus, 

almost all physical quantities fundamentally 

rely on eigenvalues and the corresponding 

state of functions of a system. The 

temperature dependence of the energy levels 

is simulated with and without an external 

magnetic field and AB flux intensity. Our 

investigation shows agreement, as worked out 

by Bahar (2020), that the external magnetic 

field and AB flux interrelation giveaway have 

a high influence on the confinement potential 

of the system and credibly arranges the 

orientation of the system. These phenomena 

required more intensive attention to be 



 

 

 

G.G. Alemu et al                                                   Sci. Technol. Arts Res. J., Oct. - Dec. 2019, 8(4), 14-28 

 
 A Peer-reviewed Official International Journal of Wollega University, Ethiopia                         
 

studied; furthermore, almost all physical, 

chemical, thermal, optical, and magnetic 

properties of materials were affected. We 

investigated that temperature dependence of 

bound energy level (Rajabi, 2013) without 

external magnetic fields and AB flux intensity 

did not affect the confinement potential 

structure. 
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