
 

 

Misganu, C                                                          Sci. Technol. Arts Res. J., Jan. – March 2024, 13(1), 1-8 

 
A Peer-reviewed Official International Journal of Wollega University, Ethiopia                           

 

 DOI: https://doi.org/10.20372/star.v13i1.01 

ISSN: 2226-7522 (Print) and 2305-3372 (Online)  

Science, Technology and Arts Research Journal  

             Sci. Technol. Arts Res. J., Jan. – March 2024, 13(1), 1-8 

Journal Homepage: https://journals.wgu.edu.et 
 

  
 

Statistical and Squeezing Properties of Superposed Squeezed Vacuum States 

 

Misganu Chewaka  
 

Department of Physics, College of Natural and Computational Sciences, Wollega University, Ethiopia 
 

Abstract  Article Information 

This research looks at the compressed light beams superposed on top of each 

other and their statistical and compressive properties. It is possible to construct 

the anti-normally ordered characteristics function using the density operator of 

single-mode squeezed vacuum states. The quasi-probability distribution functions 

(Q-function) for identical two-mode superposed states, three-mode squeezed 

vacuum states, and one-mode squeezed vacuum states can be obtained using this 

function. We calculate the statistical and squeezing characteristics of single 

mode and superposed light beams with the function Q that was derived. The 

correlation between the average photon number and quadrature variance of the 

superimposed light beams and their corresponding values for the average photon 

number and quadrature variance of the single-mode compressed vacuum states 

is found to be equal to zero. The average amount of photons also rises as the 

squeezing parameter is increased. In addition, we find that the superposed light 

beams' quadrature squeezing is the same as the one in the single-mode squeezed 

vacuum. As the squeeze parameter gets closer to infinity, the plus quadrature, 

where the compression occurs, approaches unity. 
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INTRODUCTION 
 

Chaos, coherence, and compression are the 

three main quantum states of light. The super-

Poissonian photon statics chaotic state of light 

is one of its classical features. It includes 

thermal light, for example. The coherence 

state is a specific superposition of photon-free 

number states determined by the lowest 

uncertainty and poissonian photon statistics. 

Lumbropoulos and Petrosyan (2007), Lü 

(1999), and Barnett (2002) all note that the 

compressed state is a well-known and studied 

non-classical property of light. 

 

 

Quadrature operators, formed by constructing 

and destroying Hamiltonian arrangements of 

operators, reflect the observed values of a 

single-mode light. When the noise in one 

quadrature is smaller than the coherence state 

level while the noise in the conjugate 

quadrature increases, and the uncertainty 

relation is preserved, the single-mode light is 

said to be in a squeezed state (Scully & 

Zubairy, 1997). Whenever the quadrature 

uncertainties satisfy the minimal uncertainty 

relation, we say that the light mode is in a 
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minimal uncertainty state. To be in a 

minimum uncertainty state, an SVS must have 

quadrature variances that are fewer than the 

level of coherence and conjugate variances 

that are more than the level of coherent. 

       Numerous optical processes, including 

subharmonic production and second harmonic 

generation, result in squeezed states (Darge & 

Kassahun, 2010; Gardiner & Zoller, 2004). 

Squeezed light with reduced noise might be 

advantageous for optical communications and 

precise measurement. Using the standard 

concept of quadrature variance, these authors 

carried out their research (Kassahun, 2012). In 

contrast, the quadrature variance makes sense 

for superposed light beams. His findings 

indicate that the quadrature variances of the 

coherent and compressed lights add up to the 

quadrature variance of the superposed lights 

(Yamamoto & Haus, 1986; Yuen & Shapiro, 

1978). 

       It is common practice to use distribution 

functions to characterise the quantum 

characteristics of light modes.  They are 

therefore perfectly appropriate for assessing 

the expected values of the operators' 

symmetrically ordered, anti-symmetrically 

ordered, and normally ordered functions 

(Chuma, 2016; Fan, 2011). 

The Q distribution function is used in this 

work, and the statistical and squeezing 

characteristics of the superposed three 

identical SMSVSs are discussed. 
 

The Condition of Squeezed Vacuum (SVS) 
 

Vacuum state with a single mode of 

compression Essentially, a degenerate 

parametric amplifier is a single-mode 

squeezed vacuum state that is powered by 

coherent light and consists of nonlinear 

crystals. The classical treatment of a strong 

pump mode can be approximated to a good 

degree; this is the shape of the degenerate 

parametric amplifier's Hamiltonian. 

�̂� =
𝑖𝜀

2
(�̂�2 − �̂�†2)                                        (1)  

 Initially in vacuum state |0⟩, the state vector 

of the single mode can be represented as,  

|𝜓(𝑡)⟩ = exp[
𝑖𝜀

2
(�̂�2 − 𝜀�̂�†2) ] |0⟩                 (2) 

and the SVS |𝑟⟩ is defined as 

|𝑟⟩ = �̂�†(𝑟)|0⟩,                                             (3) 

Where 

�̂�†(𝑟) = 𝑒𝑥𝑝 [
𝑖𝑟

2
(�̂�2 − �̂�†2)]                        (4) 

is the squeeze operator, with 𝜀= 𝜆𝛽0 (𝜆 is the 

coupling constant and 𝛽0 is assumed to be real 

and positive constant) and r being the squeeze 

parameter taken to be real and a positive 

constant. The corresponding evolution 

operator of the single-mode read 

�̂�(𝑟) = �̂�†(𝑟)�̂��̂�(𝑟) = �̂�† cosh 𝑟 − �̂� sinh 𝑟                  

                                                                      (5) 

and its complex conjugate takes the form 

�̂�†(𝑟) = �̂�(𝑟)�̂��̂�†(𝑟) = �̂�cosh 𝑟 − �̂�†sinh 𝑟.      (6) 

 

The anti-normally ordered characteristic 

function 

 

It is defined as 

𝜙𝑎(𝑧) = 𝑇𝑟 (�̂� 𝑒−𝑧∗�̂�𝑒𝑧�̂�†
)                           (7) 

Here, (�̂� =  |𝑟⟩⟨𝑟| ),  

𝜙𝑎(𝑧) = 𝑇𝑟 (|𝑟⟩⟨𝑟| 𝑒−𝑧∗�̂�𝑒𝑧�̂�†
)                  (8) 

Use of Eq. (2) along with the unitary operator 

has been made. Using a power series 

expansion, Eq. (7) , 

𝜙𝑎(𝑧) =

⟨0|�̂�†(𝑟)𝑒−𝑧∗�̂��̂�(𝑟)�̂�†(𝑟)𝑒𝑧�̂�†
�̂�(𝑟)|0⟩         (9) 
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Employing the Baker-Hausdorff identity 

𝑒 �̂�𝑒�̂� = 𝑒𝑥𝑝 (�̂� + �̂� +
1

2
[�̂�, �̂�])                (10) 

𝜙𝑎(𝑧) = 𝑒
−𝑧∗𝑧

2 ⟨0|𝑒𝑧�̂�†(𝑟)−𝑧∗�̂�(𝑟)|0⟩.            (11) 

Use of Eqs. (4) and (5), the result obtained 

was 

𝜙𝑎(𝑧) = 𝑒
−𝑧∗𝑧

2
 −

𝐹𝐺

2 ⟨0|𝑒𝐹�̂�†−𝐺�̂�|0⟩,              (12) 

Where F= zcosh r +z*sinh r and G=z*cosh r +z 

sinh r. With the help of the identity  

𝑒 �̂�𝑒�̂� = 𝑒 �̂�𝑒�̂�𝑒[�̂�, �̂�]                                    (13) 

in Eq. (12), we found 

𝜙𝑎(𝑧) = exp [−𝑧∗𝑧 𝑐𝑜𝑠ℎ2𝑟 −

1

2
𝑠𝑖𝑛ℎ𝑟 cosh 𝑟 (𝑧2 + 𝑧∗2)]                         (14) 

The Q Function 

It is defined by 

𝑄(𝛼∗, 𝛼) =
1

𝜋
⟨𝛼|�̂�|𝛼⟩                                      (15) 

𝜙𝑎(𝑧) = ∫ 𝑑2𝛼 𝑄(𝛼∗, 𝛼)𝑒𝑥𝑝(𝑧𝛼∗ − 𝑧∗𝛼) (16) 

The Q function is the inverse Fourier 

transform of Eq. (16) and is given by 

𝑄(𝛼∗, 𝛼) =
1

𝜋2 ∫ 𝑑2𝛼 𝜙𝑎(𝑧) 𝑒𝑥𝑝(𝑧∗𝛼 − 𝑧𝛼∗).                     

                                                                    (17) 

Now on combining Eq. (13) with Eq. (16), 

there follows 

𝑄(𝛼∗, 𝛼) =
1

𝜋2
∫ 𝑑2𝛼 𝑒𝑥𝑝[−𝑎𝑧∗𝑧 + 𝑏𝑧 + 𝑐𝑧∗

+ 𝐴(𝑧2 + 𝑧∗2)]                   (18) 

where a=cosh2 r, b = -𝛼∗, 𝑐 = 𝛼, and A= 

−
1

2
sinh 𝑟 cosh 𝑟. Employing the standard 

integral relation   

1

𝜋
∫ 𝑑2𝛼 𝑒𝑥𝑝[−𝑎𝑧∗𝑧 + 𝑏𝑧 + 𝑐𝑧∗ + 𝐴𝑧2 +

𝐵𝑧∗2] =
1

√𝑎2−4𝐴𝐵
𝑒𝑥𝑝 (

𝑎𝑏𝑐+𝐴𝑐2+𝐵𝑏2

𝑎2−4𝐴𝐵
) , 𝑎 > 0     

                                                                    (19) 

Using Eq. (18), we found 

𝑄(𝛼∗, 𝛼) =
𝑠𝑒𝑐ℎ𝑟

𝜋
 𝑒𝑥𝑝 [−𝛼∗𝛼 −

1

2
tanh 𝑟 (𝛼2 + 𝛼∗2)]                                   (20) 

is the normalized Q function for an SMSVS. 

Photon Statistics 

The density operator allows one to express the 

anticipated value of operator function D ̂ as 

�̂� = 𝑇𝑟 (�̂� �̂�)                                             (21) 

〈�̂�〉 = ∫ 𝑑2𝛼 𝑄(𝛼∗, 𝛼)𝐷𝑎(𝛼, 𝛼∗),                 (22) 

where 𝑄(𝛼∗, 𝛼) is given in Eq. (12) and 

𝐷𝑎(𝛼, 𝛼∗) is the operator function 𝐷𝑎(�̂�, �̂�†) in 

the anti-normal order corresponding to the c-

number function. In view of Eq. (20), Eq. (22) 

can be rewritten as 

〈�̂�〉 =
𝑠𝑒𝑐ℎ𝑟

𝜋
 ∫ 𝑑2𝛼 𝑒𝑥𝑝 [−𝛼∗𝛼 −

1

2
tanh 𝑟 (𝛼2 + 𝛼∗2)] 𝐷𝑎(𝛼, 𝛼∗).                 (23) 
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One way to express the average photon 

number is 

〈�̂�†�̂�〉 =
𝑠𝑒𝑐ℎ𝑟

𝜋
 ∫ 𝑑2𝛼 𝑒𝑥𝑝 [−𝛼∗𝛼 −

1

2
tanh 𝑟 (𝛼2 + 𝛼∗2)] (𝛼𝛼∗ − 1),                (24) 

〈�̂�†�̂�〉 = 𝑠𝑖𝑛ℎ2𝑟.                                         (25) 

Furthermore, the photon number variance for 

an SMSVS is 

(Δ𝑛)2 = 2𝑠𝑖𝑛ℎ2𝑟 (𝑠𝑖𝑛ℎ2𝑟 + 1).               (26) 

Quadrature Squeezing 

The variance of the quadrature operators for 

an SMSVS is defined by  

(Δd ±)2 = 1 + 〈: �̂�±, �̂�±: 〉,                       (27) 

Using the two Hermitian quadrature operators, 

�̂�+= �̂� + �̂�†                                                    (28) 

and  

�̂�−= 𝑖(�̂�† − �̂�),                                             (29) 

Eq. (27) can be rewritten as 

(Δd ±)2 = 1 + 2〈�̂�†�̂�〉 ± 〈�̂�2〉 ± 〈�̂�†2〉 ∓

 〈�̂�†〉2 ∓ 〈�̂�〉2 − 2〈�̂�†〉〈�̂�〉                           (30) 

Using Eq. (23), the computed expectation 

values are 

〈�̂�†〉 = 〈�̂�〉 = 0                                           (31) 

〈�̂�2〉 = 〈�̂�†2〉 = −
1

4
(𝑒2𝑟 − 𝑒−2𝑟).             (32) 

Substituting Eqs. (31) and (32) into Eq. (30), 

we obtained 

(Δd ±)2 = 𝑒∓2𝑟 .                                        (33) 

Thus, for big positive values of r, the plus 

quadrature operator's variance is less than the 

coherence level, and the negative quadrature 

fluctuation is accentuated. The result is that 

the plus quadrature is the location of the 

squeezed state of SMSVS. Using Eq. (30), it is 

clear that the quadrature variance of a 

coherent state can be expressed as unit. Next, 

an SMSVS's quadrature squeezing as 

𝑠 =
1−(Δd+)2

1
.                                              (34) 

In view of Eq. (33), we see that 

𝑠 = 1 − 𝑒−2𝑟 .                                             (35) 

The quadrature squeezing vanishes at zero 

value of the squeeze parameter r. As the 

squeeze parameter approaches infinity, the 

quadrature squeezing approaches one. That is 

the squeezing becomes 100%. 

The Superposed Squeezed Vacuum States  

The Q function for two SMSVS  

Suppose Q1 (𝛼*, 𝛼) = Q (𝛽*, 𝛼-𝛾) and Q2 (𝛼*, 

𝛼) = Q (𝛾*, 𝛼 − 𝛽) are two light beams 

expressed as 

Q (𝛽∗, 𝛼 − 𝛾) =
𝑠𝑒𝑐ℎ𝑟

𝜋
 𝑒𝑥𝑝 [−𝛽∗(𝛼 − 𝛾) −

1

2
tanh 𝑟 (𝛽∗2 + 𝛼∗2 + 𝛾2 − 2𝛼𝛾)]            (36) 

and 

Q (𝛾*, 𝛼 − 𝛽) =
𝑠𝑒𝑐ℎ𝑟

𝜋
 𝑒𝑥𝑝 [−𝛾∗(𝛼 − 𝛽) −

1

2
tanh 𝑟 (𝛽2 + 𝛼2 + 𝛾∗2 − 2𝛼𝛾)].            (37) 
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Now we need to determine Q (𝛼*, 𝛼) function 

for the superposed two light beams that can be 

written as  

𝑄12(𝛼∗, 𝛼) =
1

𝜋
∬ 𝑑2𝛽𝑑2𝛾 Q (𝛽∗, 𝛼 −

𝛾)Q (𝛾∗, 𝛼 − 𝛽) × 𝑒𝑥𝑝[𝛼𝛽∗ + 𝛽𝛼∗ +

𝛾(𝛼∗ − 𝛽∗) + 𝛾∗(𝛼 − 𝛽) − 𝛼∗𝛼 − 𝛽∗𝛽 −

𝛾∗𝛾].                                                        (38) 

Substituting Eqs. (35) and (36) into Eq. (37), 

using Eq. (18) we arrive at 

𝑄12(𝛼∗, 𝛼) =
1

𝜋
𝑒𝑥𝑝[−𝛼∗𝛼(1 + 2𝑠𝑖𝑛ℎ2𝑟) −

𝑠𝑖𝑛ℎ𝑟 cosh 𝑟 (𝛼2 + 𝛼∗2)].                          (39) 

The Q function for three identical SMSVS 

By the account of Eqs. (19) and (38), consider 

𝑄12(𝛽∗, 𝛼 − 𝛾 =
1

𝜋
 𝑒𝑥𝑝[−𝛽∗(𝛼 − 𝛾)(1 +

2𝑠𝑖𝑛ℎ2𝑟) − 𝑠𝑖𝑛ℎ𝑟 cosh 𝑟  (𝛽∗2 + 𝛼∗2 + 𝛾2 −

2𝛼𝛾)]                                                          (40) 

and 

𝑄3(𝛾*, 𝛼 − 𝛽) =
𝑠𝑒𝑐ℎ𝑟

𝜋
 𝑒𝑥𝑝 [−𝛾∗(𝛼 − 𝛽) −

1

2
tanh 𝑟 (𝛽2 + 𝛼2 + 𝛾∗2 − 2𝛼𝛽)]             (41) 

Q(𝛼∗, 𝛼) =
1

𝜋
∬ 𝑑2𝛽𝑑2𝛾 𝑄12(𝛽∗, 𝛼 −

𝛾)𝑄3(𝛾 ∗, 𝛼 − 𝛽) × 𝑒𝑥𝑝[𝛼𝛽∗ + 𝛽𝛼∗ +

𝛾(𝛼∗ − 𝛽∗) + 𝛾∗(𝛼 − 𝛽) − 𝛼∗𝛼 − 𝛽∗𝛽 −

𝛾∗𝛾].                                                            (42) 

After the substituting Eqs. (39) and (40) into 

Eq. (41), employing Eq. (18) and integrating 

the result becomes 

Q(𝛼∗, 𝛼) =
1

𝜋√1−3𝑠𝑖𝑛ℎ2𝑟
𝑒𝑥𝑝[−𝑎𝛼∗𝛼 +

𝐴(𝛼2 + 𝛼∗2)],                                             (43) 

where  

𝑎 =  
1+3𝑠𝑖𝑛ℎ2𝑟

1−𝑠𝑖𝑛ℎ2𝑟
                                             (44) 

A = −
3

2
(

sinh 𝑟 cosh 𝑟

1 − 3𝑠𝑖𝑛ℎ2𝑟
)                               (45) 

This is a normalized Q function for the 

superposed three identical SMSVSs. 

Photon statistics of the superposed three 

identical SMSVS 

As a result, we can find the average photon 

number and the variation in photon number 

using the superposed Q function (Eq. 43). In 

addition, we analyze the squeezing of its 

quadrature. The average photon number for 

the superposed states can be determined by 

substituting Eq. (43) into Eq. (22), yielding 

〈�̂�〉 =
1

𝜋√1−3𝑠𝑖𝑛ℎ2𝑟
 ∫ 𝑑2𝛼 𝑒𝑥𝑝[−𝑎𝛼∗𝛼 +

𝐴(𝛼2 + 𝛼∗2)]𝐷𝑎(𝛼, 𝛼∗)                              (46) 

where a and A are given by Eqs. (44) and 

(45). 𝐷𝑎(𝛼, 𝛼∗), is the c-number function 

corresponding to operator �̂� in the anti-normal 

order. The mean number 〈�̂�†�̂�〉 can be 

expressed as 

〈�̂�†�̂�〉 =
1

𝜋√1−3𝑠𝑖𝑛ℎ2𝑟
  ∫ 𝑑2𝛼 𝑒𝑥𝑝[𝑒𝑥𝑝[−𝑎𝛼∗𝛼 +

𝐴(𝛼2 + 𝛼∗2)]](𝛼𝛼∗ − 1).                           (47) 

This can be rewritten as 

〈�̂�†�̂�〉 =
1

𝜋√1−3𝑠𝑖𝑛ℎ2𝑟
  ∫ 𝑑2𝛼 𝑒𝑥𝑝[𝑒𝑥𝑝[−𝑎𝛼∗𝛼 +

𝑏𝛼 + 𝑐𝛼∗ + 𝐴(𝛼2 + 𝛼∗2)]](𝛼𝛼∗ − 1)|𝑏 = 𝑐 = 0.   

                                                                    (48) 
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And after completing the integration, we go to 

〈�̂�†�̂�〉 =
𝑎2−4𝐴2

√1−3𝑠𝑖𝑛ℎ2𝑟
   (

𝜕2

𝜕𝑏𝜕𝑐
−

1) 𝑒𝑥𝑝 [
𝑎𝑏𝑐+𝐴(𝑐2+𝑏2)

𝑎2−4𝐴2 ] |𝑏 = 𝑐 = 0.             (49) 

So that completing the separation, applying 

the condition b=c=o, and substituting the 

values of a  and A, one effectively gets (Hach, 

1993). 

〈�̂�†�̂�〉 = 3𝑠𝑖𝑛ℎ2𝑟.                                      (50) 

Thus Eq. (50) is the sum of the mean photon 

number of the three SMSVSs. 

In the same procedure, we can obtain 

〈�̂�†〉 = 〈�̂�〉 = 0,                                          (51) 

〈�̂�†2〉 = 〈�̂�2〉 = −3 sinh 𝑟 cosh 𝑟,              (52) 

〈(�̂�†�̂�)2〉 = 12𝑠𝑖𝑛ℎ2𝑟 + 27𝑠𝑖𝑛ℎ4𝑟.           (53) 

The photon-number variance is defined as 

(∆𝑛)2 = 〈(�̂�†�̂�)2〉 − 〈�̂�†�̂�〉2.                      (54) 

Employing Eqs. (50) and (53) into Eq. (54), 

results 

(∆𝑛)2 = 12𝑠𝑖𝑛ℎ2𝑟 + 18 𝑠𝑖𝑛ℎ4𝑟.                (55) 

we found the sum of the photon number 

variance  of the three  single mode vacuum 

states is grater than that of the superposition of 

the three single mode squeezed states. The 

photon-number variance of the three identical 

SMSVS superposed here is shown. The 

crushing properties of the superposed three 

identical SMSVS are depicted by a marginally 

changed definition of Eq. (27) as 

(Δd ±)2 = 3 + 〈: �̂�±, �̂�±: 〉.                       (56) 

Employing Eqs. (28) and (29) into Eq. (56), 

we obtain 

(Δd ±)2 = 3 + 2〈�̂�†�̂�〉 ± 〈�̂�2〉 ± 〈�̂�†2〉 ∓

 〈�̂�†〉2 ∓ 〈�̂�〉2 − 2〈�̂�†〉〈�̂�〉                           (57) 

Substituting Eqs. (49-51) into, Eq. (56), yields 

(Δd ±)2 = 3𝑒∓2𝑟 .                                        

(58) 

      The last condition is the quadrature 

fluctuation of the superposed three 

indistinguishable SMSVSs. Comparatively to 

Eqs. (33), Eq. (58) is the amount of the 

quadrature change of the singular light pillars 

(Daoud, 2003). Typically, the quadrature 

pressing of the three superposed light shafts is 

calculated by comparing it to the quadrature 

fluctuation of a single transparent light bar. 

But it looks like this isn't the right way to do 

things currently(Zayed et al., 2005; Abdalla, 

1994). Next, we contend that the quadrature 

squeezing for the superposed light beams and 

the quadrature variance of the three 

superposed coherent light beams need to be 

considered when computing the quadrature 

squeezing. It is certainly possible to determine 

the quadrature difference of three superposed 

reasonable light bars to be three by using Eq. 

(57). Eq. (58) shows that the pressing of the 

superposed states occurs in addition to 

quadrature. The last equation is the quadrature 

variance of the superposed three identical 

SMSVSs defined as 

𝑠 =
3−(Δd+)2

3
                                               (59) 

and in view of Eq. (58), we see that 

𝑠 = 1 − 𝑒−2𝑟                                             (35) 

This is just the quadrature squeezing of the 

SMSVS. 
 

CONCLUSIONS 
 

The statistical and squeezing characteristics of 

an SMSVS using the Q function have been 

covered in this article. It was discovered that 

the average photon count rises as the 

squeezing parameter increases, reaching a 

dramatic peak for high values of r. 

Furthermore, we have observed that a single-

mode squeezed vacuum state has super-

Poisson photon statistics. Additionally, it has 

been demonstrated that the quadrature 
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squeezing disappears at zero and increases to 

100% as the squeeze parameter gets closer to 

infinity. Next, we applied the Q function of an 

SMSVS to derive the Q function for the 

superposed light beams. Next, using a 

modified definition of quadrature variance, we 

looked at the mean photon number, photon 

number variance, and quadrature squeezing. It 

has been observed that the quadrature variance 

and mean photon number rise when the three 

identical SMSVSs are superposed. 

Furthermore, we have discovered that the 

superposed light beams' photon statistics are 

super-Poisson and that their quadrature 

squeezing is identical to that of the single-

mode squeezed vacuum light. 
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