Exploring the synthesis, characterization and the different Potential applications of SnO2 and TiO2 Nanoparticles: A Comprehensive Review
DOI:
https://doi.org/10.20372/star.V13.i3.R1Keywords:
Titanium oxide, Nanoparticles, Green Synthesis, Tin oxide, CharacterizationAbstract
Nanotechnology is one of the most developed sciences which different researchers need to see its application in industry. This review examines the utilization of SnO2 and TiO2 nanoparticles (NPs) in photocatalytic and microbial activities, focusing on their potential applications and recent advancements. SnO2 and TiO2 NPs have emerged as promising candidates for addressing environmental challenges and public health concerns due to their unique properties, including high surface area, photostability, and antimicrobial efficacy. Photocatalysis, driven by solar energy, offers an efficient pathway for pollutant degradation and renewable energy production, with TiO2 NPs demonstrating exceptional performance in various catalytic processes. Moreover, the antimicrobial properties of both SnO2 and TiO2 NPs make them effective agents for disinfection and sanitation applications, holding significant promise for combating microbial contamination in healthcare and water treatment. Despite their considerable potential, challenges such as optimizing nanoparticle characteristics and assessing potential risks to human health and the environment remain. Future research directions should focus on enhancing the efficiency and selectivity of SnO2 and TiO2 NPs through tailored synthesis approaches and understanding their interactions with biological systems. Overall, this review underscores the importance of SnO2 and TiO2 NPs in advancing sustainable technologies for environmental remediation and public health protection.
Downloads
Metrics
References
Adamu, A., Russo Abegão, F., & Boodhoo, K. (2023). Solvent-free synthesis of nanostructured TiO2 in a continuous flow spinning disc reactor for application to photocatalytic reduction of CO2. Tetrahedron Green Chem, 1,100007. https://doi.org/10.1016/j.tgchem.2023.100007
Akinola, P. O., Lateef, A., Asafa, T. B., Beukes, L. S., Hakeem, A. S., & Irshad, H. M. (2020). Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon, 6(8), e04610. https://doi.org/10.1016/j.heliyon. 2020.e04610
Aldeen, T. S., Ahmed Mohamed, H. E., & Maaza, M. (2022). ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids, 160, 110313. https://doi.org/10.1016/j.jpcs.2021.110313
Anbumani, D., Dhandapani, K. vizhi, Manoharan, J., Babujanarthanam, R., Bashir, A. K. H., Muthusamy, K., Alfarhan, A., & Kanimozhi, K. (2022). Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. Journal of King Saud University - Science, 34(3), 101896. https://doi.org/10.1016 /j.jksus.2022.101896
Dontsova, T. A., Kutuzova, A. S., Bila, K. O., Kyrii, S. O., Kosogina, I. V., & Nechyporuk, D. O. (2020). Enhanced photocatalytic activity of TiO2/SnO2 binary nanocomposites. Journal of Nanomaterials, 2020(1), 8349480. https://doi.org/10.1155/2020/8349480
Duraisamy, N., & Thangavelu, R. R. (2013). Synthesis, characterization and photocatalytic properties of TiO2-SnO2 composite nanoparticles. Advanced Materials Research, 678, 373–377. https://doi.org/10.4028/www.scientific.net/AMR.678.373
Ebrahimian, J., Mohsennia, M., & Khayatkashani, M. (2020). Photocatalytic-degradation of organic dye and removal of heavy metal ions using synthesized SnO2 nanoparticles by Vitex agnus-castus fruit via a green route. Materials Letters, 263, 127255. https://doi.org/10.1016/j.matlet.2019.127255
El-Belely, E. F., Farag, M. M. S., Said, H. A., Amin, A. S., Azab, E., Gobouri, A. A., & Fouda, A. (2021). Green synthesis of zinc oxide nanoparticles (Zno-nps) using arthrospira platensis (class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials, 11(1), 1–18. https://doi.org/10.3390/nano 11010095
Evstropiev, S., Karavaeva, A., Petrova, M., Nikonorov, N., Vasilyev, V., Lesnykh, L., & Dukelskii, K. (2019). Antibacterial effect of nanostructured ZnO-SnO2 coatings: The role of microstructure. Materials Today Communications, 21, 100628. https://doi.org/10.1016/j.mtcom m.2019.100628
Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., Wajidullah, Akhtar, N., Khattak, A., & Syed, S. (2021). Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega, 6(14), 9709–9722. https://doi.org/10.1021/acsomega.1 c00310
Fatimah, I., Purwiandono, G., Husnu Jauhari, M., Audita Aisyah Putri Maharani, A., Sagadevan, S., Oh, W. C., & Doong, R. an. (2022). Synthesis and control of the morphology of SnO2 nanoparticles via various concentrations of Tinospora cordifolia stem extract and reduction methods. Arabian Journal of Chemistry, 15(4), 103738. https://doi.org/10.1016 /j.arabjc.2022.103738
Ghosh, T., Chattopadhyay, A., Mandal, A. C., Pramanik, S., & Kuiri, P. K. (2020). Optical, structural, and antibacterial properties of biosynthesized Ag nanoparticles at room temperature using Azadirachta indica leaf extract. Chinese Journal of Physics, 68, 835–848. https://doi.org/10.1016/j.cjph.2020.10.025
Gomathi, E., Jayapriya, M., & Arulmozhi, M. (2021). Environmental benign synthesis of tin oxide ( SnO 2 ) nanoparticles using Actinidia deliciosa ( Kiwi ) peel extract with enhanced catalytic properties. Inorganic Chemistry Communications, 130, 108670. https://doi.org/10.1016 /j.inoche.2021.108670
Imani, S. M., Ladouceur, L., Marshall, T., Maclachlan, R., Soleymani, L., & Didar, T. F. (2020). Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano, 14(10), 12341–12369. https://doi. org/10.1021/acsnano.0c05937
Inamdar, A. K., Hulsure, N. R., Kadam, A. S., Rajenimbalkar, R. S., Karpoormath, R., Shelke, S. B., & Inamdar, S. N. (2023). Flame synthesized tetragonal TiO2 nanoparticles for Methylene Blue and Congo Red dye removal applications. Results in Chemistry, 5, 100854. https://doi.org/10.1016/j.rechem.2023.100854
Jadhav, D. B., & Kokate, R. D. (2020). Green synthesis of SnO2 using green papaya leaves for nanoelectronics (LPG sensing) application. Materials Today: Proceedings, 26, 998 1004. https:// doi.org/10.1016/j.matpr.2020.01.180
Jagdish, R., & Nehra, K. (2022). Bryophyllum pinnatum mediated synthesis of zinc oxide nanoparticles: characterization and application as biocontrol agents for multi-drug-resistant uropathogens. Heliyon, 8(10), e11080. https://doi.org/10.1016 /j.heliyon.2022.e11080
Jamil, Y. M. S., Awad, M. A. H., & Al-Maydama, H. M. A. (2022). Physicochemical properties and antibacterial activity of Pt nanoparticles on TiO2 nanotubes as electrocatalyst for methanol oxidation reaction. Results in Chemistry, 4, 100531. https://doi. org/10.1016/j.rechem.2022.100531
Jarvin, M., Inbanathan, S. S. R., Rosaline, D. R., Prabha, A. J., & Britto, S. A. M. (2022). Heliyon A study of the structural , morphological , and optical properties of shock treated SnO 2 nanoparticles : removal of Victoria blue dye. Heliyon, 8, e09653. https://doi.org/10.1016 /j.heliyon. 2022.e09653
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org /10.1016/j.arabjc.2017.05.011
Kumar, S., & Singh, R. (2021). Recent optical sensing technologies for the detection of various biomolecules: Review. Optics and Laser Technology, 134, 106620. https://doi.org/10.1016/j.optlastec.2020.106620
Kusior, A., Klich-Kafel, J., Trenczek-Zajac, A., Swierczek, K., Radecka, M., & Zakrzewska, K. (2013). TiO2-SnO2 nanomaterials for gas sensing and photocatalysis. Journal of the European Ceramic Society, 33(12), 2285–2290. https://doi.org/10.1016/j.jeurceramsoc.2013.01.022
Lal, M., Sharma, P., & Ram, C. (2022). Synthesis and photocatalytic potential of Nd-doped TiO2 under UV and solar light irradiation using a sol-gel ultrasonication method. Results in Materials, 15, 100308. https://doi.org/10.1016/j.rinma.2022.100308
Li, B., Zhou, Q., Peng, S., & Liao, Y. (2020). Recent Advances of SnO2-Based Sensors for Detecting Volatile Organic Compounds. Frontiers in Chemistry, 8, 1–6. https://doi.org/10.3389/fchem.2020.00 321
Li, H. J., Lu, W. G., Li, J. J., Bai, X. D., & Gu, C. Z. (2005). Multichannel ballistic transport in multiwall carbon nanotubes. Physical Review Letters, 95(8), 1–4. https://doi.org/10.1103/PhysRevLett.95.086601
Lian, X., Li, Y., Zhu, J., Zou, Y., Liu, X., An, D., & Wang, Q. (2019). Synthesis of coryphantha elephantidens-like SnO 2 nanospheres and their gas sensing properties. Current Applied Physics, 19(7), 849–855. https://doi.org/10.10 16/j.cap.2019.04.016
Najihah, S., Hilni, M., Ling, A., & Mohammad, A. (2020). Photoantioxidant studies of SnO 2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sciences, 105, 106279. https://doi.org/10.1016/j.solid statesciences.2020.106279
Rajput, R. B., & Kale, R. B. (2022). Results in Chemistry Solvothermally synthesized oxygen-deficient SnO2 for the degradation of methyl orange dye under sunlight and LED light irradiation. Results in Chemistry, 4, 100530. https://doi.org /10.1016/j.rechem.2022.100530
Rashidashmagh, F., Doekhi-Bennani, Y., Tizghadam-Ghazani, M., van der Hoek, J. P., Mashayekh-Salehi, A., Heijman, B. S., & Yaghmaeian, K. (2021). Synthesis and characterization of SnO2 crystalline nanoparticles: A new approach for enhancing the catalytic ozonation of acetaminophen. Journal of Hazardous Materials, 404, 124154. https://doi.org/ 10.1016/j.jhazmat.2020.124154
Rathi, V. H., & Jeice, A. R. (2023). Green fabrication of titanium dioxide nanoparticles and their applications in photocatalytic dye degradation and microbial activities. Chemical Physics Impact, 6, 100197. https://doi.org/10.1016 /j.chphi.2023.100197
Renganathan, P., Marimuthu, S., Kanniah, R., Karthikeyan, V., & Sundaram, G. A. (2022). Synthesis and characterizations of Ni-SnO2-TiO2 nanocomposite for photocatalytic application. Results in Chemistry, 4, 100557. https://doi.org/10.1016/j.rechem.2022.100557
Sagadevan, S., Lett, J. A., Vennila, S., Prasath, P. V., Kaliaraj, G. S., Fatimah, I., Léonard, E., Mohammad, F., Al-Lohedan, H. A., Alshahateet, S. F., & Lee, C. (2021). Photocatalytic activity and antibacterial efficacy of titanium dioxide nanoparticles mediated by Myristica fragrans seed extract. Chemical Physics Letters, 771, 138527. https://doi.org/10.1016/j.cplett.2021.138527
Samuel, M. S., Ravikumar, M., John, A., Selvarajan, E., Patel, H., Chander, P. S., Soundarya, J., Vuppala, S., Balaji, R., & Chandrasekar, N. (2022). A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts, 12(5), 44–63. https://doi.org/10.3390/catal12050459
Shekhar, S., Singh, S., Gandhi, N., Gautam, S., & Sharma, B. (2023). Green chemistry based benign approach for the synthesis of titanium oxide nanoparticles using extracts of Azadirachta Indica. Cleaner Engineering and Technology, 13, 100607. https://doi.org/10.1016/j.clet.2023.100607
Singh, J., Kumar, S., Alok, A., Upadhyay, S. K., Rawat, M., Tsang, D. C. W., Bolan, N., & Kim, K. H. (2019). The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. Journal of Cleaner Production, 214, 1061–1070. https://doi.org/ 10.1016/j.jclepro.2019.01.018
Slapničar, S., Žerjav, G., Zavašnik, J., Finšgar, M., & Pintar, A. (2023). Synthesis and characterization of plasmonic Au/TiO2 nanorod solids for heterogeneous photocatalysis. Journal of Environmental Chemical Engineering, 11(3). https://doi.org/10.1016/j.jece.2023.109835
Smith, D. J. (2015). Characterization of nanomaterials using transmission electron microscopy. In The Royal Society of Chemistry eBooks (pp. 1–29). https://doi.org/10.1039/9781782621867-00001
Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., Kalpana, V. N., Rajalakshmi, G., Alsehli, M., Elfasakhany, A., & Pugazhendhi, A. (2021). Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). Journal of Environmental Chemical Engineering, 9(4), 105772. https://doi.org/10.10 16/j.jece.2021.105772
Woods, S. I., Kirtley, J. R., Sun, S., & Koch, R. H. (2001). Direct investigation of superparamagnetism in co nanoparticle films. Physical Review Letters, 87(13), 137205-1-137205–4. https://doi.org/ 10.1103/PhysRevLett.87.137205
You, D. G., Deepagan, V. G., Um, W., Jeon, S., Son, S., Chang, H., Yoon, H. I., Cho, Y. W., Swierczewska, M., Lee, S., Pomper, M. G., Kwon, I. C., Kim, K., & Park, J. H. (2016). ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Scientific Reports, 6, 1–12. https://doi.org/10.1038 /srep23200
Zhang, L., Lv, F., Zhang, W., Li, R., Zhong, H., Zhao, Y., Zhang, Y., & Wang, X. (2009). Photo degradation of methyl orange by attapulgite–SnO2–TiO2 nanocomposites. Journal of Hazardous Materials, 171(1–3), 294–300. https:// doi.org/10.1016/j.jhazmat.2009.05.140
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Science, Technology and Arts Research
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
STAR © 2023 Copyright; All rights reserved
Accepted 2024-10-21
Published 2024-09-30