Exploring the synthesis, characterization and the different Potential applications of SnO2 and TiO2 Nanoparticles: A Comprehensive Review

Authors

  • Yonas Etafa Wollega University
  • Ramaswamy Krishnaraj Dambi Dollo University
  • Abel Saka Dambi Dollo University

DOI:

https://doi.org/10.20372/star.V13.i3.R1

Keywords:

Titanium oxide, Nanoparticles, Green Synthesis, Tin oxide, Characterization

Abstract

Nanotechnology is one of the most developed sciences which different researchers need to see its application in industry. This review examines the utilization of SnO2 and TiO2 nanoparticles (NPs) in photocatalytic and microbial activities, focusing on their potential applications and recent advancements. SnO2 and TiO2 NPs have emerged as promising candidates for addressing environmental challenges and public health concerns due to their unique properties, including high surface area, photostability, and antimicrobial efficacy. Photocatalysis, driven by solar energy, offers an efficient pathway for pollutant degradation and renewable energy production, with TiO2 NPs demonstrating exceptional performance in various catalytic processes. Moreover, the antimicrobial properties of both SnO2 and TiO2 NPs make them effective agents for disinfection and sanitation applications, holding significant promise for combating microbial contamination in healthcare and water treatment. Despite their considerable potential, challenges such as optimizing nanoparticle characteristics and assessing potential risks to human health and the environment remain. Future research directions should focus on enhancing the efficiency and selectivity of SnO2 and TiO2 NPs through tailored synthesis approaches and understanding their interactions with biological systems. Overall, this review underscores the importance of SnO2 and TiO2 NPs in advancing sustainable technologies for environmental remediation and public health protection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yonas Etafa, Wollega University

Department of Physics, College of Natural and Computational Sciences, Wollega University, Ethiopia

Ramaswamy Krishnaraj, Dambi Dollo University

Departments of Mechanical Engineering, College of Engineering and Technology, Dambi Dollo University, Ethiopia.

Abel Saka, Dambi Dollo University

Department of Physics, College of Natural and Computational Sciences, Dambi Dollo University, Ethiopia.

References

Adamu, A., Russo Abegão, F., & Boodhoo, K. (2023). Solvent-free synthesis of nanostructured TiO2 in a continuous flow spinning disc reactor for application to photocatalytic reduction of CO2. Tetrahedron Green Chem, 1,100007. https://doi.org/10.1016/j.tgchem.2023.100007

Akinola, P. O., Lateef, A., Asafa, T. B., Beukes, L. S., Hakeem, A. S., & Irshad, H. M. (2020). Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon, 6(8), e04610. https://doi.org/10.1016/j.heliyon. 2020.e04610

Aldeen, T. S., Ahmed Mohamed, H. E., & Maaza, M. (2022). ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids, 160, 110313. https://doi.org/10.1016/j.jpcs.2021.110313

Anbumani, D., Dhandapani, K. vizhi, Manoharan, J., Babujanarthanam, R., Bashir, A. K. H., Muthusamy, K., Alfarhan, A., & Kanimozhi, K. (2022). Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. Journal of King Saud University - Science, 34(3), 101896. https://doi.org/10.1016 /j.jksus.2022.101896

Dontsova, T. A., Kutuzova, A. S., Bila, K. O., Kyrii, S. O., Kosogina, I. V., & Nechyporuk, D. O. (2020). Enhanced photocatalytic activity of TiO2/SnO2 binary nanocomposites. Journal of Nanomaterials, 2020(1), 8349480. https://doi.org/10.1155/2020/8349480

Duraisamy, N., & Thangavelu, R. R. (2013). Synthesis, characterization and photocatalytic properties of TiO2-SnO2 composite nanoparticles. Advanced Materials Research, 678, 373–377. https://doi.org/10.4028/www.scientific.net/AMR.678.373

Ebrahimian, J., Mohsennia, M., & Khayatkashani, M. (2020). Photocatalytic-degradation of organic dye and removal of heavy metal ions using synthesized SnO2 nanoparticles by Vitex agnus-castus fruit via a green route. Materials Letters, 263, 127255. https://doi.org/10.1016/j.matlet.2019.127255

El-Belely, E. F., Farag, M. M. S., Said, H. A., Amin, A. S., Azab, E., Gobouri, A. A., & Fouda, A. (2021). Green synthesis of zinc oxide nanoparticles (Zno-nps) using arthrospira platensis (class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials, 11(1), 1–18. https://doi.org/10.3390/nano 11010095

Evstropiev, S., Karavaeva, A., Petrova, M., Nikonorov, N., Vasilyev, V., Lesnykh, L., & Dukelskii, K. (2019). Antibacterial effect of nanostructured ZnO-SnO2 coatings: The role of microstructure. Materials Today Communications, 21, 100628. https://doi.org/10.1016/j.mtcom m.2019.100628

Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., Wajidullah, Akhtar, N., Khattak, A., & Syed, S. (2021). Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega, 6(14), 9709–9722. https://doi.org/10.1021/acsomega.1 c00310

Fatimah, I., Purwiandono, G., Husnu Jauhari, M., Audita Aisyah Putri Maharani, A., Sagadevan, S., Oh, W. C., & Doong, R. an. (2022). Synthesis and control of the morphology of SnO2 nanoparticles via various concentrations of Tinospora cordifolia stem extract and reduction methods. Arabian Journal of Chemistry, 15(4), 103738. https://doi.org/10.1016 /j.arabjc.2022.103738

Ghosh, T., Chattopadhyay, A., Mandal, A. C., Pramanik, S., & Kuiri, P. K. (2020). Optical, structural, and antibacterial properties of biosynthesized Ag nanoparticles at room temperature using Azadirachta indica leaf extract. Chinese Journal of Physics, 68, 835–848. https://doi.org/10.1016/j.cjph.2020.10.025

Gomathi, E., Jayapriya, M., & Arulmozhi, M. (2021). Environmental benign synthesis of tin oxide ( SnO 2 ) nanoparticles using Actinidia deliciosa ( Kiwi ) peel extract with enhanced catalytic properties. Inorganic Chemistry Communications, 130, 108670. https://doi.org/10.1016 /j.inoche.2021.108670

Imani, S. M., Ladouceur, L., Marshall, T., Maclachlan, R., Soleymani, L., & Didar, T. F. (2020). Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano, 14(10), 12341–12369. https://doi. org/10.1021/acsnano.0c05937

Inamdar, A. K., Hulsure, N. R., Kadam, A. S., Rajenimbalkar, R. S., Karpoormath, R., Shelke, S. B., & Inamdar, S. N. (2023). Flame synthesized tetragonal TiO2 nanoparticles for Methylene Blue and Congo Red dye removal applications. Results in Chemistry, 5, 100854. https://doi.org/10.1016/j.rechem.2023.100854

Jadhav, D. B., & Kokate, R. D. (2020). Green synthesis of SnO2 using green papaya leaves for nanoelectronics (LPG sensing) application. Materials Today: Proceedings, 26, 998 1004. https:// doi.org/10.1016/j.matpr.2020.01.180

Jagdish, R., & Nehra, K. (2022). Bryophyllum pinnatum mediated synthesis of zinc oxide nanoparticles: characterization and application as biocontrol agents for multi-drug-resistant uropathogens. Heliyon, 8(10), e11080. https://doi.org/10.1016 /j.heliyon.2022.e11080

Jamil, Y. M. S., Awad, M. A. H., & Al-Maydama, H. M. A. (2022). Physicochemical properties and antibacterial activity of Pt nanoparticles on TiO2 nanotubes as electrocatalyst for methanol oxidation reaction. Results in Chemistry, 4, 100531. https://doi. org/10.1016/j.rechem.2022.100531

Jarvin, M., Inbanathan, S. S. R., Rosaline, D. R., Prabha, A. J., & Britto, S. A. M. (2022). Heliyon A study of the structural , morphological , and optical properties of shock treated SnO 2 nanoparticles : removal of Victoria blue dye. Heliyon, 8, e09653. https://doi.org/10.1016 /j.heliyon. 2022.e09653

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org /10.1016/j.arabjc.2017.05.011

Kumar, S., & Singh, R. (2021). Recent optical sensing technologies for the detection of various biomolecules: Review. Optics and Laser Technology, 134, 106620. https://doi.org/10.1016/j.optlastec.2020.106620

Kusior, A., Klich-Kafel, J., Trenczek-Zajac, A., Swierczek, K., Radecka, M., & Zakrzewska, K. (2013). TiO2-SnO2 nanomaterials for gas sensing and photocatalysis. Journal of the European Ceramic Society, 33(12), 2285–2290. https://doi.org/10.1016/j.jeurceramsoc.2013.01.022

Lal, M., Sharma, P., & Ram, C. (2022). Synthesis and photocatalytic potential of Nd-doped TiO2 under UV and solar light irradiation using a sol-gel ultrasonication method. Results in Materials, 15, 100308. https://doi.org/10.1016/j.rinma.2022.100308

Li, B., Zhou, Q., Peng, S., & Liao, Y. (2020). Recent Advances of SnO2-Based Sensors for Detecting Volatile Organic Compounds. Frontiers in Chemistry, 8, 1–6. https://doi.org/10.3389/fchem.2020.00 321

Li, H. J., Lu, W. G., Li, J. J., Bai, X. D., & Gu, C. Z. (2005). Multichannel ballistic transport in multiwall carbon nanotubes. Physical Review Letters, 95(8), 1–4. https://doi.org/10.1103/PhysRevLett.95.086601

Lian, X., Li, Y., Zhu, J., Zou, Y., Liu, X., An, D., & Wang, Q. (2019). Synthesis of coryphantha elephantidens-like SnO 2 nanospheres and their gas sensing properties. Current Applied Physics, 19(7), 849–855. https://doi.org/10.10 16/j.cap.2019.04.016

Najihah, S., Hilni, M., Ling, A., & Mohammad, A. (2020). Photoantioxidant studies of SnO 2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sciences, 105, 106279. https://doi.org/10.1016/j.solid statesciences.2020.106279

Rajput, R. B., & Kale, R. B. (2022). Results in Chemistry Solvothermally synthesized oxygen-deficient SnO2 for the degradation of methyl orange dye under sunlight and LED light irradiation. Results in Chemistry, 4, 100530. https://doi.org /10.1016/j.rechem.2022.100530

Rashidashmagh, F., Doekhi-Bennani, Y., Tizghadam-Ghazani, M., van der Hoek, J. P., Mashayekh-Salehi, A., Heijman, B. S., & Yaghmaeian, K. (2021). Synthesis and characterization of SnO2 crystalline nanoparticles: A new approach for enhancing the catalytic ozonation of acetaminophen. Journal of Hazardous Materials, 404, 124154. https://doi.org/ 10.1016/j.jhazmat.2020.124154

Rathi, V. H., & Jeice, A. R. (2023). Green fabrication of titanium dioxide nanoparticles and their applications in photocatalytic dye degradation and microbial activities. Chemical Physics Impact, 6, 100197. https://doi.org/10.1016 /j.chphi.2023.100197

Renganathan, P., Marimuthu, S., Kanniah, R., Karthikeyan, V., & Sundaram, G. A. (2022). Synthesis and characterizations of Ni-SnO2-TiO2 nanocomposite for photocatalytic application. Results in Chemistry, 4, 100557. https://doi.org/10.1016/j.rechem.2022.100557

Sagadevan, S., Lett, J. A., Vennila, S., Prasath, P. V., Kaliaraj, G. S., Fatimah, I., Léonard, E., Mohammad, F., Al-Lohedan, H. A., Alshahateet, S. F., & Lee, C. (2021). Photocatalytic activity and antibacterial efficacy of titanium dioxide nanoparticles mediated by Myristica fragrans seed extract. Chemical Physics Letters, 771, 138527. https://doi.org/10.1016/j.cplett.2021.138527

Samuel, M. S., Ravikumar, M., John, A., Selvarajan, E., Patel, H., Chander, P. S., Soundarya, J., Vuppala, S., Balaji, R., & Chandrasekar, N. (2022). A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts, 12(5), 44–63. https://doi.org/10.3390/catal12050459

Shekhar, S., Singh, S., Gandhi, N., Gautam, S., & Sharma, B. (2023). Green chemistry based benign approach for the synthesis of titanium oxide nanoparticles using extracts of Azadirachta Indica. Cleaner Engineering and Technology, 13, 100607. https://doi.org/10.1016/j.clet.2023.100607

Singh, J., Kumar, S., Alok, A., Upadhyay, S. K., Rawat, M., Tsang, D. C. W., Bolan, N., & Kim, K. H. (2019). The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. Journal of Cleaner Production, 214, 1061–1070. https://doi.org/ 10.1016/j.jclepro.2019.01.018

Slapničar, S., Žerjav, G., Zavašnik, J., Finšgar, M., & Pintar, A. (2023). Synthesis and characterization of plasmonic Au/TiO2 nanorod solids for heterogeneous photocatalysis. Journal of Environmental Chemical Engineering, 11(3). https://doi.org/10.1016/j.jece.2023.109835

Smith, D. J. (2015). Characterization of nanomaterials using transmission electron microscopy. In The Royal Society of Chemistry eBooks (pp. 1–29). https://doi.org/10.1039/9781782621867-00001

Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., Kalpana, V. N., Rajalakshmi, G., Alsehli, M., Elfasakhany, A., & Pugazhendhi, A. (2021). Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). Journal of Environmental Chemical Engineering, 9(4), 105772. https://doi.org/10.10 16/j.jece.2021.105772

Woods, S. I., Kirtley, J. R., Sun, S., & Koch, R. H. (2001). Direct investigation of superparamagnetism in co nanoparticle films. Physical Review Letters, 87(13), 137205-1-137205–4. https://doi.org/ 10.1103/PhysRevLett.87.137205

You, D. G., Deepagan, V. G., Um, W., Jeon, S., Son, S., Chang, H., Yoon, H. I., Cho, Y. W., Swierczewska, M., Lee, S., Pomper, M. G., Kwon, I. C., Kim, K., & Park, J. H. (2016). ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Scientific Reports, 6, 1–12. https://doi.org/10.1038 /srep23200

Zhang, L., Lv, F., Zhang, W., Li, R., Zhong, H., Zhao, Y., Zhang, Y., & Wang, X. (2009). Photo degradation of methyl orange by attapulgite–SnO2–TiO2 nanocomposites. Journal of Hazardous Materials, 171(1–3), 294–300. https:// doi.org/10.1016/j.jhazmat.2009.05.140

Downloads

Published

30.09.2024

How to Cite

Etafa, Y., Ramaswamy Krishnaraj, & Abel Saka. (2024). Exploring the synthesis, characterization and the different Potential applications of SnO2 and TiO2 Nanoparticles: A Comprehensive Review. Journal of Science, Technology and Arts Research, 13(3), R1-R14. https://doi.org/10.20372/star.V13.i3.R1

Issue

Section

Review Article

Categories

Received 2024-04-01
Accepted 2024-10-21
Published 2024-09-30

Plaudit