Structural and Ferroelectric characteristics of (1-x) NaNbO3-x(Bi0.5Li0.5)TiO3 lead-free electro-ceramic material
DOI:
https://doi.org/10.20372/star.V14.i1.02Keywords:
Ferroelectric property, Structure, NaNbO3, (Bi0.5Li0.5)TiO3, NaNbO3-Bi0.5Li0.5TiO3Abstract
To investigate its structure and ferroelectric properties, a sodium niobate-bismuth lithium titanate ((1-x)NaNbO3-x(Bi0.5Li0.5)TiO3) ceramic with a composition of x = 0.05 was created using a solid-state mixed oxide reaction method. Na2CO3, Nb2O5, Li2CO3, Bi2O3, and TiO2 were used to make the composite. The ((1-x) NaNbO3-x(Bi0.5Li0.5)TiO3) (x = 0.05) exhibits an orthorhombic crystal structure based on the X-ray diffraction pattern. The X-ray diffraction research was measured using an X-ray diffractometer. The morphological inspection is analysed using a scanning electron microscope (SEM). Ferroelectric measurements were performed using the P-E loop tracer. The coercive field (Ec) and remnant polarisation (Pr) of the ceramic sample were observed to rise with increasing applied voltage. Critical evidence from the combined structure and hysteresis loop analysis suggests that the ((1-x)NaNbO3-x(Bi0.5Li0.5)TiO3) (x = 0.05) ceramic is expected to be a potential new lead-free electronic material contender. Hence, ferroelectric materials have many applications, including capacitors, non-volatile memory, piezoelectric for ultrasound imaging and actuators, electro-optic materials for data storage applications, and thermistors.
Downloads
Metrics
References
Chaudhari, V. A., & Bichile, G. K. (2010). Structural and impedance spectroscopic studies on PbZrxTi1− xO3 ceramics. Physica B: Condensed Matter, 405(2), 534-539. https://doi.org/10.1016/j.physb.2009.09.060
De Moura, A., Lima, R., Moreira, M., Volanti, D., Espinosa, J., Orlandi, M., Pizani, P., Varela, J., & Longo, E. (2010). ZnO architectures synthesized by a microwave-assisted hydrothermal method and their photoluminescence properties. Solid State Ionics, 181(15–16), 775–780. https://doi.org/10.1016/j.ssi.2010.03.013
Kruczek, M., Talik, E., & Kania, A. (2006). Electronic structure of AgNbO3 and NaNbO3 studied by X-ray photoelectron spectroscopy. Solid State Communications, 137(9), 469–473. https://doi.org/10.1016/j.ssc.2006.01.001
Lente, M., Guerra, J. L. S., Eiras, J., & Lanfredi, S. (2004). Investigation of microwave dielectric relaxation process in the antiferroelectric phase of NaNbO3 ceramics. Solid State Communications, 131(5), 279–282. https://doi.org/10.1016/j.ssc.2004.05.035
Milanez, J., De Figueiredo, A. T., De Lazaro, S., Longo, V. M., Erlo, R., Mastelaro, V. R., Franco, R. W. A., Longo, E., & Varela, J. A. (2009). The role of oxygen vacancy in the photoluminescence property at room temperature of the CaTiO3. Journal of Applied Physics, 106(4). https://doi.org/10.1063/1.3190524
Mishra, S. K., Choudhury, N., Chaplot, S. L., Krishna, P. S. R., & Mittal, R. (2007). Competing antiferroelectric and ferroelectric interactions inNaNbO3: Neutron diffraction and theoretical studies. Physical Review B, 76(2). https://doi.org/10.1103/physrevb.76.024110
Molak, A., Pawełczyk, M., Kubacki, J., & Szot, K. (2009). Nano-scale chemical and structural segregation induced in surface layer of NaNbO3 crystals with thermal treatment at oxidising conditions studied by XPS, AFM, XRD, and electric properties tests. Phase Transitions, 82(9), 662-682. https://doi.org/10.1080/01411590903341155
Moreira, M. L., Mambrini, G. P., Volanti, D. P., Leite, E. R., Orlandi, M. O., Pizani, P. S., & Varela, J. A. (2008). Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chemistry of Materials, 20(16), 5381-5387. https://doi.org/10.1021/cm801638d
Morita, T. (2010). Piezoelectric materials synthesized by the hydrothermal method and their applications. Materials, 3(12), 5236-5245. https://doi.org/10.3390/ma3125236
Qiu, S., Fan, H., & Zheng, X. (2006). Pb(Zr0.95Ti0.05)O3 powders synthesized by Pechini method: Effect of molecular weight of polyester on the phase and morphology. Journal of Sol-Gel Science and Technology, 42(1), 21–26. https://doi.org/10.1007/s10971-006-1509-3
Satapathy, S., & Wadhawan, V. K. (2005). Fabrication of pyroelectric laser-energy meters and their characterization using Nd: YAG laser of variable pulse-width. Sensors and Actuators A: Physical, 121(2), 576-583. https://doi.org/10.1016/j.sna.2005.04.004
Selbach, S. M., Tybell, T., Einarsrud, M. A., & Grande, T. (2007). Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chemistry of materials, 19(26), 6478-6484. https://doi.org/10.1021/cm071827w
Shiratori, Y., Magrez, A., Fischer, W., Pithan, C., & Waser, R. (2007). Temperature-induced phase transitions in micro-, submicro-, and nanocrystalline NANBO3. The Journal of Physical Chemistry C, 111(50), 18493–18502. https://doi.org/10.1021/jp0738053
Śmiga, W., & Garbarz-Glos, B. (2008). Structural and mechanical properties of ceramic solid solutions Na1-xLixNbO3 for x≤ 0.06. Ferroelectrics, 377(1), 137-145. https://doi.org/10.1080/00150190802523768
Śmiga, W., Garbarz-Glos, B., Antonova, M., Kalvane, A., & Kuś, C. (2009). The Structural and Dielectric Properties of the Li0. 005Na0. 995NbO3 Ceramics. Ferroelectrics, 379(1), 86-93. https://doi.org/10.1080/00150190902850897
Teixeira, G., Gasparotto, G., Paris, E., Zaghete, M., Longo, E., & Varela, J. (2011). Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template. Journal of Luminescence, 132(1), 46–50. https://doi.org/10.1016/j.jlumin.2011.06.041
Volanti, D. P., Orlandi, M. O., Andrés, J., & Longo, E. (2010). Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm, 12(6), 1696-1699. https://doi.org/10.1039/D4CE00973H
Xu, G., Jiang, W., Qian, M., Chen, X., Li, Z., & Han, G. (2009). Hydrothermal synthesis of lead zirconate titanate nearly free-standing nanoparticles in the size regime of about 4 nm. Crystal Growth and Design, 9(1), 13-16. https://doi.org/10.1021/cg800287e
Downloads
Published
How to Cite
License
Copyright (c) 2025 Journal of Science, Technology and Arts Research

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
STAR © 2023 Copyright; All rights reserved
Accepted 2025-03-30
Published 2025-03-30