In Vitro Antibacterial Activity, Molecular docking and ADMET Analysis of Phytochemicals from the Roots of Stephania abyssimica
DOI:
https://doi.org/10.20372/star.V13.i4.08Keywords:
Antibacterial, Drug-likeness, Molecular Docking, Stephania abyssinica, PhytochemicalsAbstract
Stephania abyssinica is one of the medicinal plants used in Ethiopia to treat different ailments, such as malaria and rabies. This study aimed to isolate the phytochemical components of the root of Stephania abyssinica and evaluate their in vitro and silico biological activities. 5-methoxydurmillone (1), three Anthraquinone derivatives (2, 3, and 4), lupeol (5), and sterol (6 and 7) were isolated from the plant for the first time by silica gel column chromatography and characterized by NMR (1D and 2D) spectroscopy. The antibacterial activity of the crude extract and the isolated compounds was tested against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In silico molecular docking analyses were performed for isolated compounds 1-7 against target proteins E. coli DNA gyrase B, Pseudomonas quinolone signal A PqsA, and S. aureus pyruvate kinas, which revealed minimal binding energies ranging from -7.3 to -8.6 kcal/mol, -6.7 to -9.2 kcal/mol, and -6.4 to -11.1 kcal/mol, respectively. Isolated compounds' antibacterial activity in vitro and silico is regarded as a lead for antibacterial medications. Moreover, these active phytochemicals support the traditional use of this plant against bacterial infections. Provided that in vivo testing is performed for further validation.
Downloads
Metrics
References
Abebe, W. (2016). An Overview of Ethiopian Traditional Medicinal Plants Used for Cancer Treatment. European Journal of Medicinal Plants, 14(4), 1–16. https://doi.org/10.9734/ej mp/2016/25670
Alex, A. A., Uba, A., Birnin-Yauri, U. A., & Yusuf, A. J. (2024). Isolation and Characterization of Antimicrobial Constituent(s) from the Stem of Cissus populnea Guill. & Perr. Drugs and Drug Candidates, 3(1), 172–183. https://doi.org /10. 3390/ddc3010010
Ayele, T. T., Gurmessa, G. T., Abdissa, Z., Kenasa, G., & Abdissa, N. (2022). Oleanane and Stigmasterol-Type Triterpenoid Derivatives from the Stem Bark of Albizia gummifera and Their Antibacterial Activities. Journal of Chemistry, 2022. https://doi.org /10.1155/202 2/9003143
Birhanu, Z., Endale, A., & Shewamene, Z. (2015). An ethnomedicinal investigation of plants used by traditional healers of Gondar town, North-Western Ethiopia. Article in Journal of Medicinal Plants Studies, 3(2), 36–43. https://www.researchgate.net/publication/ 276352858
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 1–13. https://doi.org/10.1038/srep42717
Duval, J., Pecher, V., Poujol, M., & Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products, 94, 812-833. https://doi.org/10.1016/j.indcrop .201 6.09.056
Degfie, T., Endale, M., Tafese, T., Dekebo, A., & Shenkute, K. (2022). In vitro antibacterial, antioxidant activities, molecular docking, and ADMET analysis of phytochemicals from roots of Hydnora johannis. Applied Biological Chemistry, 65(1). https://doi.org/10.1186/s1 3765-022-00740-8
Endale, M., Eribo, B., Alemayehu, I., Kibret, B., & Mammo, F. (2016). Phytochemical Analysis of Roots of Aloe gilbertii and Millettia ferruginea. Journal of Science & Development, 4(1), 23–30. https://www.researchgate.net/publication / 36595861
Erwin, P. W. R., Safitry, R. D., Marliana, E., Usman, & Kusuma, I. W. (2020). Isolation and characterization of stigmasterol and β-sitosterol from wood bark extract of baccaurea macrocarpa miq. Mull. arg. Rasayan Journal of Chemistry, 13(4), 2552–2558http://dx.doi. org/10.31788/RJC.2020.1345652.
Firehun, B., & Nedi, T. (2023). Gastroprotective Activities of Aqueous and 80% Methanol Leaf Extracts of Stephania abyssinica (Quart.-Dill. and A. Rich.) Walp. (Menispermaceae) in Rats. Journal of Experimental Pharmacology, 15, 497–512 . http://dx.doi.org/10.2147/JE P.S4 37707
Giday, M., Asfaw, Z., & Woldu, Z. (2010). Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. Journal of Ethnopharmacology, 132(1), 75–85. https://doi.org/10.1016/j.jep.2010.07.046
Giday, M., Teklehaymanot, T., Animut, A., & Mekonnen, Y. (2007). Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. Journal of Ethnopharmacology, 110(3), 516–525. https://doi.org/10.1016/j.jep.2006.10.011
Habtamu, T., & Addisu, A. (2019). In vitro antibacterial activity of Rumex nervosus and Clematis simensis plants against some bacterial human pathogens. African Journal of Microbiology Research, 13(1), 14–22. https://doi.org/10.5897/ajmr2018.9017
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL.), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
Mirutse, G., Zemede, A., & Zerihun, W. (2009). Medicinal plants of the Meinit ethnic group of Ethiopia: An ethnobotanical study. Journal of Ethnopharmacology, 124(3), 513–521. https://doi.org/10.1016/j.jep.2009.05.009
Saur, I. M. L., Panstruga, R., & Schulze-Lefert, P. (2021). NOD-like receptor-mediated plant immunity: from structure to cell death. Nature Reviews Immunology, 21(5), 305–318. https://doi.org/ 10.1038/s41577-020-00473-z
Shifa, M., Abdissa, D., & Asere, T. G. (2021). Chemical constituents of rumex abyssinicus roots and evaluation of its antimicrobial activities. Journal of the Turkish Chemical Society, Section A: Chemistry, 8(1), 21–46. https://doi.org/10.18596/jotcsa.797560
Shwe, H. H., Win, K. K., Moe, T. T., Myint, A. A., & Win, T. (2019). Isolation and Structural Characterization of Lupeol from the Stem Bark of Diospyros ehretioides Wall. Ieee-Sem, 7(8), 140–144. http://dx.doi.org/10.4314 /jasem.v24i 6.11
Srivastava, S., Haneef, M., Saxena, V. L., Khan, M., & Khan, S. (2024). Structure and Ligand-based In Silico Studies towards the Natural Inhibitors against Receptor Recognition Spike Protein of SARS-CoV-2. The Open Bioinformatics Journal, 17(1), 1–15. https://doi.org/10.2174/0118750362284177240304055831
Suleman, S., & Alemu, T. (2012). A survey on utilization of ethnomedicinal plants in Nekemte town, East Wellega (Oromia), Ethiopia. Journal of Herbs, Spices and Medicinal Plants, 18(1), 34–57. https:// doi.org/10.1080/104964 75.2011.645188
Tadesse, A. A., Muhammed, B. L., & Zeleke, M. A. (2022). Chrysophanol from the Roots of Kniphofia Insignis and Evaluation of Its Antibacterial Activities. Journal of Chemistry, 2022(1), 1–4. https://doi.org/10.1155/202 2/ 5884309
Teklehaymanot, T., & Giday, M. (2007). Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 3, 1–11. https://doi.org/10.1 186/1746-4269-3-12
Uttu, A. J., Sallau, M. S., Ibrahim, H., & Iyun, O. R. A. (2023). Isolation, characterization, and docking studies of campesterol and β-sitosterol from Strychnos innocua (Delile) root bark. Journal of Taibah University Medical Sciences, 18(3), 566–578. https://doi.org/10. 1016/j.jtumed.2022.12.003
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
Worku, L. A., Bachheti, R. K., Bisht, S. S., Bachheti, A., & Alemu, W. K. (2024). Exploring the Medicinal Potential of Hyptis suaveolens (Lamiaceae): A Comprehensive Review of Phytochemicals, Pharmacological Properties, and Drug Development Prospects. Natural Product Communications , 19(11).https://doi.org/1934578X241298919
Yiblet, T. G., Tsegaw, A., Ahmed, N., Dagnew, S. B., Tadesse, T. Y., & Kifle, Z. D. (2022). Evaluation of Wound Healing Activity of 80% Methanol Root Crude Extract and Solvent Fractions of Stephania abyssinica (Dill. & A. Rich.) Walp. (Menispermaceae) in Mice. Journal of Experimental Pharmacology, 14, 255–273. https://doi.org/10.2147/jep.s364282
Zemene, M., Geta, M., Huluka, S. A., & Birru, E. M. (2021). Antimalarial Activity of the 80% Methanol Leaf Extract and Solvent Fractions of Stephania abyssinica (Dill. & A. Rich.) Walp. against Plasmodium berghei Infection in Mice. Ethiopian Pharmaceutical Journal, 36(2), 109–120. https://doi.org/10.4314/epj.v 36i2.4
Zeng, Y. B., Wei, D. J., Dong, W. H., Cai, C. H., Yang, D. L., Zhong, H. M., Mei, W. L., & Dai, H. F. (2017). Antimicrobial glycoalkaloids from the tubers of Stephania succifera. Archives of Pharmacal Research, 40(4), 429–434. https://doi.org/10.1007/ s12272-014-0467-5
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Science, Technology and Arts Research
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
STAR © 2023 Copyright; All rights reserved