Effect of pre-treatment on health enhancing bioactive compounds and functional properties of improved Assosa I sorghum flour variety cultivated in Ethiopia

Authors

  • Ebisa Olika Keyata Wollega University
  • Yetenayet B. Tola Jimma University
  • Geremew Bultosa Botswana University
  • Sirawdink Fikreyesus Forsido Jimma University

DOI:

https://doi.org/10.20372/star.v12i1.01

Keywords:

Antioxidants, Bioactive compounds, Functional properties, Malting, Soaking, Sorghum

Abstract

This study assessed the effects of washing, soaking, and malting on the functional characteristics and phytochemical composition of the improved Assosa I sorghum variety, which is grown in the Benishagul Gumuz Region of Ethiopia. The experiment had only one component (pre-treatment), and it was conducted with four levels (raw, washed, soaking, and malted) in a properly randomized fashion. The findings demonstrated that malting significantly (p < 0.05) raised the flour's phytochemical content and antioxidant capability among the four treatment levels that showed (p < 0.05) decrease in bulk density and swelling power, despite increases in solubility, water, and oil absorption capacity. Antioxidant capacities, the IC50 of DPPH, and ferric-reducing antioxidant power (FRAP) were linked with levels of total phenolic, flavonoids, L-ascorbic acid, and β-carotene. Overall study results showed that malting had the greatest potential to increase, relative to the control sample, the antioxidant power of total phenolic, total flavonoid, β-carotene, L-ascorbic acid, 1,1-diphenyl-2-picrylhydrazyl, and ferric reductions by 122.86, 120.18, 54.55, 29.01, 7.11, and 36.63%, respectively. Malting also increases solubility by 51.94% and reduces bulk density by 7.25% when applied to raw sorghum. The creation of supplemental weaning foods for infants and young toddlers could greatly benefit from these findings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ebisa Olika Keyata , Wollega University

Department of Food and Nutritional Sciences, Wollega University, P.O. Box 38, Shambu, Ethiopia

Yetenayet B. Tola, Jimma University

Department of Post-Harvest Management, Jimma University, College of Agriculture and Veterinary Medicine, P.O. Box: 307, Jimma, Ethiopia

Geremew Bultosa, Botswana University

Department of Food Science and Technology, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana

Sirawdink Fikreyesus Forsido, Jimma University

Department of Post-Harvest Management, Jimma University, College of Agriculture and Veterinary Medicine, P.O. Box: 307, Jimma, Ethiopia

References

Abd Elmoneim, O. E., & Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chemistry, 121(2), 387-390.

Adebowale, A. A., Sanni, L. O., & Awonarin, S. O. (2005). Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Science and Technology International, 11, 373-382.

Adedeji, O. E., Oyinloye, O. D., & Ocheme, O. B. (2014). Effects of germination time on the functional properties of maize flour and the degree of gelatinization of its cookies. African Journal of Food Science, 8(1), 42-47.

Adepeju, A. B., Gbadamosi, S. O., Omobuwajo, T. O., & Abiodun, O. A. (2014). Functional and physicochemical properties of complementary diets produced from breadfruit (Artocarpusaltilis). African Journal of Food Science and Technology, 5 (4), 105-113.

Afify, A. E., El-Beltagi, H. S., Abd El-Salam, S. M., & Omran, A. A. (2012a). Biochemical changes in phenols, flavonoids, tannins, vitamin E, β–carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pacific Journal of Tropical Biomedicine, 2(3), 203-209.

Agrawal, D., Anubha, U., & Preeti, S. N. (2013). Functional characteristics of malted flour of foxtail, barnyard and little millets. Annals Food Science and Technology, 14 (1), 44-49.

American Association of Cereal Chemists. Approved Methods Committee. (2000). Approved methods of the American association of cereal chemists. AACC.

AOAC International (2007) Official methods of analysis, 18th edn. (2005). Current through revision 2, 2007 (On-line).

Awuchi, C. G., Igwe, V. S., & Echeta, C. K. (2019). The functional properties of foods and flours. International Journal of Advanced Academic Research, 5(11), 139-160.

Bekele, A., Bultosa, G., & Belete, K. (2012). The effect of germination time on malt quality of six sorghum (Sorghum bicolor) varieties grown at Melkassa, Ethiopia. Journal of the Institute of Brewing, 118(1), 76-81.

Beuchat, L. (1977). Functional and electrophoretic characteristics of succinylated peanut flourprotein. Journal of Agriculture and Food Chemistry, 25, 258-261.

Buelga,, C., Paramas, G., Oludemi, T., Durán, B., & Manzano, S. (2019). Plant phenolics as functional food ingredients. Advances in Food and Nutrition Research, 90, 183-257.

Burits, M., & Bucar, F.(2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14, 323-328.

Chandra, S., & Samsher, S. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research, 8(38), 4849-4852.

Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182.

Chinma, C. E., Anuonye, J. C., Simon, O. C., Ohiare, R. O., & Danbaba, N. (2015). Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Food Chemistry, 185, 454-458.

Chung, I. M., Yeo, M. A., Kim, S. J., Kim, M. J., Park, D. S., & Moon, H. I. (2011). Antilipidemic activity of organic solvent extract from Sorghum bicolor on rats with diet-induced obesity. Human and experimental toxicology, 30(11), 1865-1868.

CSA. (2019). The federal democratic republic of Ethiopia Central statistical agency Agricultural sample survey 2018/19 (2011 E.C.). Volume I Report on Area and production of major crops (private peasant holdings, Meher season).

de Morais Cardoso, L., Pinheiro, S. S., Martino, H. S. D., & Pinheiro-Sant'Ana, H. M. (2017). Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Critical Reviews in Food Science and Nutrition, 57(2), 372-390.

Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & M´erillon, J. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal Agricultural and Food Chemistry, 57(5), 1768-1774.

Duenas, M., Hernández, T., Estrella, I., & Fernández, D. (2009). Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chemistry, 117 (4), 599-607.

Ed Nignpense, B., Francis, N., Blanchard, C., & Santhakumar, A. B. (2021). Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods, 10(7), 1-25.

Evans, C. E., & Monday, O. A. (2009). Predicting a-amylase yield and malt quality of some sprouting cereals using 2nd order polynomial model. African Journal of Biochemistry Research, 3(8), 288-292.

Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.

Farooqui, A. S., Syed, H. M., Talpade, N. N., Sontakke, M. D., & Ghatge, P. U. (2018). Influence of germination on chemical and nutritional properties of Barley flour. Journal of Pharmacognosy and Phytochemistry, 7(2), 3855-3858.

Gernah, D. I., Ariahu, C. C., & Ingbian, E. K. (2011). Effects of malting and lactic fermentation on some chemical and functional properties of maize (Zea mays). American Journal of Food Technology, 6(5), 404-412.

Ghavidel, R. A., & Prakash, J. (2006). Effect of germination and dehulling on functional properties of legume flours. Journal of the Science of Food and Agriculture, 86, 1189-1195.

Gul, K., Tak, A., Singh, A., Singh, P., Yousuf, B., & Wani, A. (2015). Chemistry, encapsulation, and health benefits of β-carotene - A review. Cogent Food & Agriculture, 1, 1-12.

Gupta, S., Parvez, N., & Sharma, P. K. (2015). Extraction and characterization of Hibiscus rosasinensis mucilage as pharmaceutical adjuvant. World Applied Sciences Journal, 33(1), 136-141

Im Chung, S., Lo, L. M. P., & Kang, M. Y. (2016). Effect of germination on the antioxidant capacity of pigmented rice (Oryza sativa L. cv. Superjami and Superhongmi). Food Science and Technology Research, 22(3), 387-394.

Iwe, M. O., Onyeukwu, U., & Agiriga, A. N. (2016). Proximate, functional and pasting properties of FARO 44 rice, African yam bean and brown cowpea seeds composite flour. Cogent Food & Agriculture, 2(1), 1142409.

James, S., Akosu, N. I., Maina, Y. C., Baba, A. I., Nwokocha, L., Amuga, S. J., & Omeiza, M. Y. M. (2018). Effect of addition of processed Bambara nut on the functional and sensory acceptability of millet‐based infant formula. Food Science and Nutrition, 6(4), 783-790.

Kadiri, O. (2017). A review on the status of the phenolic compounds and antioxidant capacity of the flour: Effects of cereal processing. International Journal of Food Properties, 20(1), 798-809.

Keyata, E. O., Tola, Y. B., Bultosa, G., & Forsido, S. F. (2021b). Phytochemical contents, antioxidant activity and functional properties of Raphanus sativus L, Eruca sativa L. and Hibiscus sabdariffa L. growing in Ethiopia. Heliyon Food Science and Nutrition, 7(1), 1-9, e05939.

Keyata, E.O., Tola, Y.B., Bultosa, G. & Forsido, S.F. (2021a). Premilling treatments affect nutritional composition, antinutritional factors, and in vitro mineral bioavailability of the improved Assosa I sorghum variety (Sorghum bicolor L.). Food Science and Nutrition, 9, 1929-1938, doi: 10.1002/fsn3.2155

Khyade, V. B., & Jagtap, S. G. (2016). Sprouting exert significant influence on the antioxidant activity in selected pulses (black gram, cowpea, desi chickpea and yellow mustard). World Scientific News, 35, 73-86.

Kim, J., & Park, Y. (2012). Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutrition & metabolism, 9(1), 106.

Kim, M. J., Kwak, H. S., & Kim, S. S. (2018). Effects of germination on protein, γ-aminobutyric acid, phenolic acids, and antioxidant capacity in wheat. Molecules, 23(9), 2244.

Kirby, A. J., & Schmidt, R. J. (1997). The antioxidant activity of Chinese herbs for eczema and of placebo herbs I. Journal of Ethno-pharmacology, 56 (2),103-108.

Kruma, Z., Tomsone, L., Ķince, T., Galoburda, R., Senhofa, S., Sabovics, M., & Sturite, I. (2016). Effects of germination on total phenolic compounds and radical scavenging activity in hull-less spring cereals and triticale. Agronomy Research, 14 (2), 1372-1383.

Laxmi, G., Chaturvedi, N., & Richa, S. (2015). The impact of malting on nutritional composition of foxtail millet, wheat and chickpea. Journal of Nutrition and Food Sciences, 5, 407.

Legesse, T., Demelash, H., & Seyoum, A. (2019). Participatory variety selection for enhanced promotion and adoption of improved sorghum [Sorghum bicolor (L) Moench] varieties for the humid lowland of Assosa Zone, Western Ethiopia. Scientific Research and Reviews, 12,104.

Lien, D. T. P., Tram, P. T. B., & Toan, H. T. (2017). Effect of germination on antioxidant capacity and nutritional quality of soybean seeds (Glycinemax (L.) Merr.). Can Tho University Journal of Science, 6, 93-101.

Modipuram, M. U. (2013). Assessment of functional properties of different flours. African Journal of Agricultural Research, 8 (38), 4849-4852.

Moraes, É. A., Natal, D. I. G., Queiroz, V. A. V., Schaffert, R. E., Cecon, P. R., de Paula, S. O., Benjamim, L. d. A., Ribeiro, S. M. R., & Martino, H. S. D. (2012). Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Research International, 49, 553-559.

Nefale, F. E., & Mashau, M. E. (2018). Effect of germination period on the physicochemical, functional and sensory properties of finger millet flour and porridge. Asian Journal of Applied Sciences, 6 (5), 360-367.

Niroula, A., Khatri, S., Khadka, D., & Timilsina, R. (2019). Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. International Journal of Food Properties, 22(1), 427-437.

Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science and Nutrition, 6(8), 2446-2458.

Obadina, A. O., Arogbokun, C. A., Soares, A. O., de Carvalho, C. W. P., Barboza, H. T., & Adekoya, I. O. (2017). Changes in nutritional and physico-chemical properties of pearl millet (Pennisetum glaucum) Ex-Borno variety flour as a result of malting. Journal of Food Science and Technology, 54(13), 4442-4451.

Ocheme, O. B., Adedeji, O. E., Lawal, G., & Zakari, U. M. (2015). Effect of germination on functional properties and degree of starch gelatinization of sorghum flour. Journal of Food Research, 4 (2), 159-165.

Okoli, E. V., Okolo, B. N., Moneke, A. N., & Ire, F. S. (2010). Effects of cultivar and germination time on amylolytic potential, extract yield and wort fermenting properties of malting sorghum. Asian journal of biotechnology, 2(1), 14-26.

Oladele, A., & Aina, J. (2007). Chemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus). African Journal of Biotechnology, 6 (21), 2473-2476.

Oyarekua, M. A., & Adeyeye, E. I. (2009). Comparative evaluation of the nutritional quality, functional properties and amino acid profile of co-fermented maize/cowpea and sorghum/cowpea Ogi as infant complementary food. Asian Journal of Clinical Nutrition, 1(1), 31-39.

Pal, R. S., Bhartiya, A., ArunKumar, R., Kant, L., Aditya, J. P., & Bisht, J. K. (2016). Impact of dehulling and germination on nutrients, antinutrients, and antioxidant properties in horsegram. Journal of Food Science and Technology, 53(1), 337-347.

Pawlowska, E., Szczepanska, J., & Blasiak, J.(2019 ). Pro- and antioxidant effects of vitamin C in cancer in correspondence to its dietary and pharmacological concentrations. Oxidative Medicine and Cellular Longevity. Article ID 7286737, 18 pages.

Praveena, R. J., & Estherlydia, D. (2014). Comparative study of phytochemical screening and antioxidant capacities of vinegar made from peel and fruit of pineapple (Ananas comosus l). International Journal of Pharma and Bio Sciences, 5(4), 394-403

Sadler, G., Davis, J., & Dezman, D. (1990). Rapid extraction of lycopene and beta-carotene from reconstituted tomato paste and pink grapefruit homogenates. Journal of Food Science, 55, 1460-1461.

Saleh, A. S., Wang, P., Wang, N., Yang, S., & Xiao, Z. (2019). Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges. Critical Reviews in Food Science and Nutrition, 59(2), 207-227.

Saxena, A. K., Chadha, M., & Sharma, S. (2003). Nutrients and antinutrients in chickpea (Cicer arietinum L.) cultivars after soaking and pressure cooking. Journal of Food Science and Technology, 40(5), 493-497.

Siddiqua, A., Ali, M. S., & Ahmed, S. (2019). Functional properties of germinated and non-germinated cereals: A comparative study. Bangladesh Journal of Scientific and Industrial Research, 54(4), 383-390.

Singh, A., Sharma, S., Singh, B., & Kaur, G. (2019). In vitro nutrient digestibility and antioxidative properties of flour prepared from sorghum germinated at different conditions. Journal of Food Science and Technology, 56(6), 3077-3089.

Singleton, V., Orthofer, R., & Lamuela, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299,152–178.

Tiwari, Ch. & Husain, N.(2017). Biological activities and role of flavonoids in human health–A Review. Indian Journal of Science Research, 12(2), 193-196.

Van Hung, P., Hatcher, D. W., & Barker, W. (2011). Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chemistry, 126 (4), 1896-1901.

Vanamala, J. K., Massey, A. R., Pinnamaneni, S. R., Reddivari, L., & Reardon, K. F. (2018). Grain and sweet sorghum (Sorghum bicolor L. Moench) serves as a novel source of bioactive compounds for human health. Critical reviews in Food Science and Nutrition, 58(17), 2867-2881.

Wilhelm, L. R., Dwayna, A. S., & Gerard, H. B. (2004). Introduction to problem solving skills. In: Food and Process Engineering Technology, ASAE. Date of accessed, August 2020.

Xiong, Y., Zhang, P., Luo, J., Johnson, S., & Fang, Z. (2019). Effect of processing on the phenolic contents, antioxidant activity and volatile compounds of sorghum grain tea. Journal of Cereal Science, 85, 6-14

Xu, B. J., & Chang, S. K. C. (2008). Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. Journal of Food Science, 73 (2), 19-27.

Yang, F., Basu, B., & Ooraikul F. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Sciences and Nutrition, 52, 319-330.

Yang, L., Browning, J. D., & Awika, J. M. (2009). Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. Journal of Agricultural and Food Chemistry, 57,1797-1804.

Zhao, Z. Y., Che, P., Glassman, K., & Albertsen, M. (2019). Nutritionally enhanced sorghum for the arid and semiarid tropical areas of Africa. In Sorghum (pp. 197-207). Humana Press, New York, NY.

Downloads

Published

28.03.2023

How to Cite

Olika Keyata , E., Tola, Y. B., Bultosa, G., & Fikreyesus Forsido, S. (2023). Effect of pre-treatment on health enhancing bioactive compounds and functional properties of improved Assosa I sorghum flour variety cultivated in Ethiopia. Journal of Science, Technology and Arts Research, 12(1), 1–15. https://doi.org/10.20372/star.v12i1.01

Issue

Section

Original Research

Categories

Plaudit