A Review on Green Synthesis, Characterization and Application of Metal Nanoparticles

Authors

  • Lema Yadeta Wollega University
  • Asnake Lealem Wollega University

DOI:

https://doi.org/10.20372/star.v12i4.10

Keywords:

Nanoparticles, bottom-up approach, top-down approach, green synthesis, characterization, Applications

Abstract

Atoms or molecules having unusual physical properties and a size between one and one hundred nanometers are called nanoparticles (NPs). Their origins, sizes, and structural arrangements allow them to be grouped into different categories.  Two approaches are utilized in the synthesis of NPs: the top-down strategy and the bottom-up procedure. The top-down size reduction method is used to make NPs by dividing the bulk material into tiny particles. Developing NPs from smaller building components is done via a bottom-up technique. To synthesize, the bottom-up method incorporates both chemical and biological procedures. The green synthesis method is among the most well-liked bottom-up approaches to NP production. Biomaterials derived from various sources are utilized, such as bacterial, fungal, algal, and plant extracts. Investigation of NPs can be carried out using state-of-the-art nano-characterization techniques such as UV-vis, AFM, TEM, SEM, XRD, and FT-IR after synthesis. Soil health and productivity were preserved for centuries to come because to nanoparticles' uses in biomedicine, antimicrobial agents, cancer treatments, catalysis, and other areas.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Lema Yadeta, Wollega University

Department of Chemistry, Wollega University, Shambu, Ethiopia

Asnake Lealem , Wollega University

Department of Chemistry, Wollega University, Nekemte, Ethiopia

References

Adamu, A., & Osama, A. (2019). Application of Green Synthesis of Gold Nanoparticles: A Review. Jurnal Teknologi (Sciences & Engineering) 81(1), 171–182

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.

Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials science and engineering: C, 49, 373-381.

Amer, M. W., & Awwad, A. M. (2021). Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chemistry International, 7, 1-8.

Anu, R., Krishna, Y., Sheeja, J. (2020). A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production, 122880.

Astruc, D. (2008). Nanoparticles and catalysis. John Wiley & Sons.

Bhat, I., Z. Khanam & Bhat, A. (2017). Current Trends in the Preparation of Nanoparticles for Drug Delivery in Engineering Applications of Nanotechnology. Springer, 313-334.

Bukka, S., Badam, R., Vedarajan, R., & Matsumi, N. (2019). Photo-generation of ultra-small Pt nanoparticles on carbon-titanium dioxide nanotube composites: A novel strategy for efficient ORR activity with low Pt content. International Journal of Hydrogen Energy, 44(10), 4745-4753.

Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology progress, 22(2), 577-583.

Chen, A. Y., Lü, J. M., Yao, Q., & Chen, C. (2016). Entacapone is an antioxidant more potent than vitamin C and vitamin E for scavenging of hypochlorous acid and peroxynitrite, and the inhibition of oxidative stress-induced cell death. Medical science monitor: international medical journal of experimental and clinical research, 22, 687.

Da Silva Ferreira, V., ConzFerreira, M. E., Lima, L. M. T., Frasés, S., de Souza, W., & Sant’Anna, C. (2017). Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and microbial technology, 97, 114-121.

Duran, N., Marcato, P. D., De Souza, G. I., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of biomedical nanotechnology, 3(2), 203-208.

Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., & Ashokkumar, S. (2015). Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.

Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC advances, 9(23), 12944-12967.

Hoffman, A. J., Mills, G., Yee, H., & Hoffmann, M. R. (1992). Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. The Journal of Physical Chemistry, 96(13), 5546-5552.

Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes a review. Colloids and Surfaces Biotechnology: Biointerfaces, 121, 474-483.

Husseiny, M. I., Abd El-Aziz, M., Badr, Y., & Mahmoud, M. A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), 1003-1006.

Jayaseelan, C., Ramkumar, R., Rahuman, A. A., & Perumal, P. (2013). Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Industrial Crops and Products, 45, 423-429.

Khan, A. A., Fox, E. K., Górzny, M. Ł., Nikulina, E., Brougham, D. F., Wege, C., & Bittner, A. M. (2013). pH control of the electrostatic binding of gold and iron oxide nanoparticles to tobacco mosaic virus. Langmuir, 29(7), 2094-2098.

Kidwai, M. (2010). Nanoparticles in green catalysis. Handbook of Green Chemistry: Online, 81-92.

Kumar, P., Singh, P., Kumari, K., Mozumdar, S., & Chandra, R. (2011). A green approach for the synthesis of gold nanotriangles using aqueous leaf extract of Callistemon viminalis. Materials Letters, 65(4), 595-597.

Li, S., Al-Misned, F. A., El-Serehy, H. A., & Yang, L. (2021). Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arabian Journal of Chemistry, 14(2), 102931.

Matson, M. L., & Wilson, L. J. (2010). Nanotechnology and MRI contrast enhancement. Future medicinal chemistry, 2(3), 491-502.

Momeni, S., & Nabipour, I. (2015). A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Applied biochemistry and biotechnology, 176, 1937-1949.

Pissuwan, D., Valenzuela, S. M., & Cortie, M. B. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. TRENDS in Biotechnology, 24(2), 62-67.

Poinern, G. E. J., Chapman, P., Shah, M., & Fawcett, D. (2013). Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bulletin, 2(1).

Rajan, A., Rajan, A. R., & Philip, D. (2017). Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano, 2, 1-8.

Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A., & Harish, R. (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180, 264-267.

Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial pathogenesis, 116, 221-226.

Sarkar, J., & Acharya, K. (2017). Alternaria alternata culture filtrate mediated bioreduction of chloroplatinate to platinum nanoparticles. Inorganic and Nano-Metal Chemistry, 47(3), 365-369.

Schröfel, A., Kratošová, G., Šafařík, I., Šafaříková, M., Raška, I., & Shor, L. M. (2014). Applications of biosynthesized metallic nanoparticles–a review. Acta biomaterialia, 10(10), 4023-4042.

Senapati, S. (2005). Biosynthesis and immobilization of nanoparticles and their applications.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.

Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of colloid and interface science, 275(2), 496-502.

Singh, A., Gautam, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkar, S., & Samanta, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechno logy Reports, 25, e00427.

Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in biotechnology, 34(7), 588-599.

Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials letters, 61(6), 1413-1418.

Vijayan, S. R., Santhiyagu, P., Ramasamy, R., Arivalagan, P., Kumar, G., Ethiraj, K., & Ramaswamy, B. R. (2016). Seaweeds: a resource for marine bio nano technology. Enzyme and microbial technology, 95, 45-57.

Yahya, N., Kamarudin, S. K., Karim, N. A., Masdar, M. S., Loh, K. S., & Lim, K. L. (2019). Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support. Energy Conversion and Management, 188, 120-130.

Zhao, X., Zhou, L., Riaz Rajoka, M. S., Yan, L., Jiang, C., Shao, D & Jin, M. (2018). Fungal silver nanoparticles: synthesis, application and challenges. Critical reviews in biotechnology, 38(6), 817-835.

Zharov, V. P., Kim, J. W., Curiel, D. T., & Everts, M. (2005). Self-assembling nanoclusters in living systems: application for integrated photothermal nano diagnostics and nano therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 1(4), 326-345.

Downloads

Published

30.12.2023

How to Cite

Yadeta, L., & Lealem , A. (2023). A Review on Green Synthesis, Characterization and Application of Metal Nanoparticles. Journal of Science, Technology and Arts Research, 12(4), 129–146. https://doi.org/10.20372/star.v12i4.10

Issue

Section

Review Article

Categories

Plaudit