Static Sign Language Word-Level Detection and Recognition for the Oromo Language

Authors

DOI:

https://doi.org/10.20372/star.V14.i2.03

Keywords:

Afaan Oromo, signed word level, AI, deep learning, YOLOv9

Abstract

Sign language is a way to communicate ideas and feelings to those who are hard of hearing. In this study, we suggested using AI to help hearing-impaired people communicate better. The study depends on the sign language word level of the Afaan Oromo text. The goal of this paper is to use a deep learning strategy to generate static word-level translations from signed words into equivalent Afaan Oromo texts. Afaan Oromo text is the system's final output, and video frames containing text in signed language serve as the system's input. Our study offers a thorough understanding of how YOLO-v9 functions and outperforms the earlier model. We collected literature, conducted an experiment, and used video data. Pre-processing tasks such as frame extraction, resizing, labeling, and data splitting using Roboflow are carried out in order to train our model. The system achieved a precision of 88.8%, a recall of 91.3%, an mAP of 92.7% at 0.5 IoU, and a score of 75.2% at 0.5:0.95 IoU. In general, our model is usable for our community, who can read Afaan Oromo texts, and the visually impaired to recognize Afaan Oromo, because many people cannot hear and understand the signs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Diriba Negash, Wollega University

Department of Computer Science, College of Engineering & Technology, Wollega University, Nekemte, Ethiopia

Etana Fikadu, Wollega University

Department of Computer Science, College of Engineering & Technology, Wollega University, Nekemte, Ethiopia

Daditu Dugasa, Wollega University

Department of Computer Science, College of Engineering & Technology, Wollega University, Nekemte, Ethiopia

References

Abdalla, S., Hassan, H., Fahad, A. A., Hassan, H. J., & Abdullah, S. H. (2020). Deep Learning-based Deaf & Mute Gesture Translation System. Article in International Journal of Science and Research, 5, 3–8. https://doi.org/10.21275/SR20503031800

Bedaso, M., & Hussein, A. (2024). Developing Sign Language Recognition Model for Afaan Oromoo Words Using a Deep Learning Techniques. 1–23.https://doi.org/10.21203 /rs. 3.rs-4218445/v1

Bhat, A., Yadav, V., Dargan, V., & Yash. (2022). Sign Language to Text Conversion using Deep Learning. 2022 3rd International Conference for Emerging Technology, INCET 2022, 4036–4044. https://doi.org/10.1109/INCET54531 .2022.9824885

Chen, W., Luo, J., Zhang, F., & Tian, Z. (2024). A review of object detection: Datasets, performance evaluation, architecture, applications and current trends. In Multimedia Tools and Applications (Vol. 83, Issue 24). Springer US. https://doi.org/10.1007/s11042-023-17949-4

Dinsa, E. (2007). Innovative Factors and Challenges in Integrating Technology in Education for Global Development. 1028–1035. https://doi.org/10.5281/zenodo.6913186

Dinsa, E. F., Das, M., & Abebe, T. U. (2024a). A topic modeling approach for analyzing and categorizing electronic healthcare documents in Afaan Oromo without label information. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-83743-3

Dinsa, E. F., Das, M., & Abebe, T. U. (2024b). OPEN AI ‑ based disease category prediction model using symptoms from low ‑ resource Ethiopian language : Afaan Oromo text. Scientific Reports, May. https://doi.org/10.1038/s41598-024-62278-7

Dinsa, E. F., Das, M., Abebe, T. U., & Ramaswamy, K. (2024). Automatic categorization of medical documents in Afaan Oromo using ensemble machine learning techniques. Discover Applied Sciences, 6(11). https://doi.org/10.1007/s42452-024-06307-0

Dulume, W., Justice, O., & Profesionals, S. (2022). Assessing Key Factors in the Making Afan Oromo One of the Federal Working Languages. International Affairs and Global Strategy, October. https://doi.org/10.7176/iags/93-01

Farooq, U., Rahim, M. S. M., Sabir, N., Hussain, A., & Abid, A. (2021). Advances in machine translation for sign language: approaches, limitations, and challenges. Neural Computing and Applications, 33(21), 14357–14399. https://doi.org/10.1007/s00521-021-06079-3

Fikadu, D. E., & Babu P.R. (2019). Application of Data Mining Classification Algorithms for Afaan Oromo Media Text News Categorization. International Journal of Computer Trends & Technology, 67(7), 73–79. https://doi.org/10.14445/22312803/ijctt-v67i7 p112

Fikadu, E. (2020). Blended- Learning Approach for Ethiopian Education System : In Case of Second Generation University. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(3), 947–954. https://doi.org/ 10.32628/cseit2063206

Fikadu, E., Das, M., Urgessa, T., & Ramaswamy, K. (2025). A supervised learning approach for recommending medical specialists in the healthcare sector for the Afaan Oromo context. Discover Computing, 28(1). https://doi.org/10.1007/s10791-025-09556-8

Fikadu, E., Urgessa, T., & Das, M. (2025). MLP-SVM: a hybrid approach for improving the performance of the classification model for health-related documents from social media using multi-layer perceptron and support vector machine. Discover Applied Sciences, 7(4). https://doi.org/10.1007/s42452-025-06851-3

Garoma, E. T. (2024). Demonstratives in Afaan Oromoo. Cogent Arts and Humanities, 11(1). https://doi.org/10.1080/23311983.2023.2297494

Imran, A., Hulikal, M. S., & Gardi, H. A. A. (2024). Real Time American Sign Language Detection Using Yolo-v9. http://arxiv.org/abs/2407.17950

Kodandaram, S. R., Kumar, N. P., & Gl, S. (2021). Sign Language Recognition. July. https://doi.org/10.13140/RG.2.2.29061.47845

Liang, Z., Li, H., & Chai, J. (2023). Sign Language Translation: A Survey of Approaches and Techniques. Electronics (Switzerland), 12(12). https://doi.org/10.3390/electronics12122678

Liau, Y. Y. (2021). Status Recognition Using Pre-Trained YOLOv5 for Sustainable Human-Robot Collaboration ( HRC ) System in Mold Assembly.https://doi.org/10.3390/su132112044

Meng, Y., Speier, W., Shufelt, C., Joung, S.E., Van Eyk, J., Bairey Merz, C. N., Lopez, M., Spiegel, B., & Arnold, C. W. (2020). A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients with Heart Disease Using Activity Tracker Data. IEEE Journal of Biomedical and Health Informatics, 24(3), 878–884. https://doi.org/10.1109/JBHI.2019.2922178

Negash, T.D., Fikadu, D.E., & Fikadu, K. H. (2023). Signed Language Translation into Afaan Oromo Text Using Deep-Learning Approach. American Journal of Artificial Intelligence, 7(2), 40–51. https://doi.org/10.11648/j.ajai.20230702.12

Núñez, M. A., Perez, V.O., & Labaka, G. (2023). A survey on Sign Language machine translation. Expert Systems with Applications, 213, 118993. https://doi.org/10.1016/j.eswa.2022.118993

Olkeba, I. F., & Worku, H. S. (2021). Developing Amharic Sign Language Recognition Model for Amharic Characters Using Deep Learning Approach. Research Square, 1–18. https://doi.org/10.21203/rs.3.rs-236824/v1

Padilla, R., Passos, W. L., Dias, T. L. B., Netto, S. L., & Da Silva, E. A. B. (2021). A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics (Switzerland), 10(3), 1–28. https://doi.org/10.3390/electronics10030279

Pathak, A., Kumar, P.A., Chugh, G., & Ijmtst, E. (2022). Real Time Sign Language Detection. International Journal for Modern Trends in Science and Technology, 8, 32–37. https://doi.org/10.46501/IJMTST08 01 006

Wang, C.Y., Yeh, I.H., & Liao, H.Y. M. (2024). YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information.

https://doi.org/10.1007/978-3-031-72751-1_1

Weldemikael, F. (2020). Ethiopian Deaf Associations’Perception and Satisfaction Towards Sign Language Interpretation Service of Ethiopian. https://doi.org/10.1353/sls.2018 .0037

Downloads

Published

30.06.2025

How to Cite

Negash, D., Fikadu, E., & Daditu Dugasa. (2025). Static Sign Language Word-Level Detection and Recognition for the Oromo Language. Journal of Science, Technology and Arts Research, 14(2), 31–38. https://doi.org/10.20372/star.V14.i2.03

Issue

Section

Original Research

Categories

Plaudit