Investigation of Structural, optical, and Magnetic Properties of Ytterbium- Aluminum ions co-doped bismuth ferrite nano-Ceramics

Authors

DOI:

https://doi.org/10.20372/star.V14.i3.11

Keywords:

Ytterbium- Aluminum, Sol-gel, Nano ceramics, Bismuth ferrite, XRD

Abstract

This study looks at the structural, optical, and magnetic properties of Al3+ and Yb3+ ions co-doped bismuth ferrite (BFO) nanoparticles made using the sol-gel method. X-ray (XRD) analysis revealed the production of a single-phase perovskite structure, with decreasing average crystallite size as the concentration of co-dopants increased. The inherent ionic radii mismatch inhibits grain formation, resulting in a reduction in size. The diffuse reflectance spectroscopy (DRS) revealed a decrease in optical band gap energy from 2.111 eV to 2.022 eV as the concentration of co-dopants increased, which is attributed to the introduction of a new energy level in the forbidden region, optimizing visible light absorption. Furthermore, the vibration sample magnetometer (VSM) results revealed a significant increase in saturation magnetization from 1.239 emu/g to 3.156 emu/g. This considerable magnetic increase is explained by the presence of co-dopants (Al3+ and Yb3+) in the host material, which effectively suppresses the natural cycloidal spiral spin structure that causes non-zero net magnetization. These results confirmed that the partial substitution of the co-dopants strategy has effectively tailored the properties of the pristine BFO, making the resulting nanoparticles promising candidates for the application in photocatalysis, magnetic memory storage, MRI contrast agents, and targeted drug delivery.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Senbeto Kena, Wollega University

Department of Physics, College of Natural and Computational Sciences, Wollega University,

 Nekemte, Ethiopia

Kebede Legesse, Wollega University

Department of Physics, College of Natural and Computational Sciences, Wollega University,

 Nekemte, Ethiopia

References

Devesa, S., Rooney, A., Graça, M., Cooper, D., & Costa, L. (2020). Williamson-hall analysis in estimation of crystallite size and lattice strain in Bi1.34Fe0.66Nb1.34O6.35 prepared by the sol-gel method. Materials Science and Engineering B, 263, 114830. https://doi.org/10.1016/j.ms eb.2020.114830

Junaid, M., Khan, M., Ain, N. U., Batoo, K. M., & Hussain, S. (2023). Electrical and magnetic characteristics of barium doped bismuth ferrite via sol–gel auto combustion technique. Results in Chemistry, 6, 101208. https://doi.org/ 10.1016/j.rechem.2023.101208

Kharbanda, S., Dhanda, N., Sun, A. A., Thakur, A., & Thakur, P. (2023). Multiferroic perovskite bismuth ferrite nanostructures: A review on synthesis and applications. Journal of Magnetism and Magnetic Materials, 572, 170569. https://doi.org/10.1016/j.jmmm.202 3.170569

Kumar, A., Panigrahi, A., Shekhar, M., Kumar, L., & Kumar, P. (2024). Effect of Eu and Mn co-doping on temperature dependent dielectric relaxation behaviour and electric conduction mechanisms of bismuth ferrite. Journal of Electroceramics, 52(2), 144–169. https://doi. org/10.1007/s10832-024-00346-0

Lakshmi, B., Thomas, B. J., & Gopinath, P. (2021). Accurate band gap determination of chemically synthesized cobalt ferrite nanoparticles using diffuse reflectance spectroscopy. Advanced Powder Technology, 32(10), 3706–3716. https://doi.org/10.1016/j.apt.2021.08.028

Ma, Y., Shen, H., Fang, Y., Geng, H., Zhao, Y., Li, Y., Xu, J., & Ma, Y. (2023). Effect of bismuth on the structure, magnetic and photocatalytic characteristics of GDFEO3. Magneto chemistry, 9(2), 45. https://doi. org/10.3390/magnetochemistry9020045

Masoudpanah, S. M., Mirkazemi, S. M., Bagheriyeh, R., Jabbari, F., & Bayat, F. (2017). Structural, magnetic and photocatalytic characterization of Bi1−x La x FeO3 nanoparticles synthesized by thermal decomposition method. Bulletin of Materials Science, 40(1), 93–100. https://doi.org/10. 1007/s12034-016-1346-0

Mhamad, S. A., Ali, A. A., Mohtar, S. S., Aziz, F., Aziz, M., Jaafar, J., Yusof, N., Salleh, W. N. W., Ismail, A. F., & Chandren, S. (2022). Synthesis of bismuth ferrite by sol-gel auto combustion method: Impact of citric acid concentration on its physicochemical properties. Materials Chemistry and Physics, 282, 125983. https://doi.org/10.1016/j.mat chemphys.2022.125983

Muthukrishnan, R. M., Devee, D. R., Ansari, P. M. Y., Sivanesan, T., & Kader, S. M. A. (2023). Investigating the structural, optical and electrochemical performance of bismuth ferrite (BiFeO3) nanoparticles toward photocatalytic activity: as an effect of reducing agent. Journal of Materials Science Materials in Electronics, 34(6). https://doi.org/10.1007/s10854-023-09 8 77-8

Naveena, G., Ravinder, D., Babu, T. A., Reddy, B. R., Sumalatha, E., Vani, K., Rajender, T., & Prasad, N. V. K. (2021). Low-temperature magnetic properties of erbium doped bismuth nano-ferrites. Journal of Materials Science Materials in Electronics, 32(13), 18224–18230. https://doi.org/10.1007/s10854-021-06 36 5-9

Nazeer, Z., Bibi, I., Majid, F., Kamal, S., Arshad, M. I., Ghafoor, A., Alwadai, N., Ali, A., Nazir, A., & Iqbal, M. (2023). Optical, photocatalytic, electrochemical, magnetic, dielectric, and ferroelectric properties of CD- and ER-Doped BIFEO3 prepared via a facile microemulsion route. ACS Omega, 8(28), 24980–24998. https://doi.org/10.1021/acsomega.3c01542

Palewicz, A., Przeniosło, R., Sosnowska, I., & Hewat, A. W. (2007). Atomic displacements in BiFeO3 as a function of temperature: neutron diffraction study. Acta Crystallographica Section B Structural Science, 63(4), 537–544. https://doi.org/10.1107/s0108768107023956

Petrukhin, D., Salnikov, V., Nikitin, A., Sidane, I., Slimani, S., Alberti, S., Peddis, D., Omelyanchik, A., & Rodionova, V. (2024). Effect of bismuth ferrite nanoparticles on physicochemical properties of polyvinylidene Fluoride-Based nanocomposites. Journal of Composites Science, 8(8), 329. https://doi.org/10.3390/jcs8080329

Preethi, A. J., & Ragam, M. (2021). Effect of doping in multiferroic BFO: A review. Journal of Advanced Dielectrics, 11 (06). https: //doi.org/10.1142/s2010135x21300012

Rashidi, P., Ghamari, M., &Ghasemifard, M. (2020). The structural and optical band gap energy evaluation of nano TiO2 powders by diffuse reflectance spectroscopy prepared via combustion method. International Nano Letters., 10(4), 271–277. https://doi.org/10. 1007/s40089-020-00313-x

Rhaman, M., Miah, & Ahmad, T. (2024). Investigation of magnetic and electric properties of bismuth ferrite nanoparticles at different temperatures. Nano-Structures & Nano-Objects, 39, 101304. https://doi.org/10. 1016/j.nanoso.2024.101304

Rhaman, M. M., Matin, M. A., Hossain, M. N., Mozahid, F. A., Hakim, M. A., & Islam, M. F. (2019). Bandgap engineering of cobalt-doped bismuth ferrite nanoparticles for photovoltaic applications. Bulletin of Materials Science, 42(4). https://doi.org/10.1007/s12034-019-1871-8

Senbeto, E., & Elangovan, S. (2024). Structural, optical, and magnetic properties study of Dy-Cr co-doped bismuth ferrite (BFO) nanoparticles. Results in Chemistry,1018 55. https://doi.org/10.1016/j.rechem.2024.101855

Shahbazi, M., Faghfouri, L., Ferreira, M. P. A., Figueiredo, P., Maleki, H., Sefat, F., Hirvonen, J., & Santos, H. A. (2020). The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 49(4), 1253–321. https://doi.org/10.1039/c9cs00283a

Sharma, S., Kumar, A., Thakur, O.P. (2023). Modified BiFeO3 Perovskites: Investigations on their Structural, and Magnetic Properties. Indian Journal of Engineering and Materials Sciences;30: 729-734. https://doi.org/10.5 6042/ijems.v30i5.6899

Singh, H. H., & Sharma, H. B. (2019). Investigation on electrical, magnetic and magneto-dielectric properties of yttrium and cobalt co-doped bismuth ferrite nanoparticles. Indian Journal of Physics, 94(10), 1561–1572. https://doi.org/1 0.1007/s12648-019-01611-7

Smith, L., Shield, J., Ahmadi, Z., Jeelani, S., &Rangari, V. (2023). Synthesis and characterization of bismuth ferrite particles using a nano-agitator bead mill. AIP Advances, 13(3). https://doi.org/10.1063/5.0132099

Sun, H., Qin, P., Liang, Y., Yang, Y., Zhang, J., Guo, J., Hu, X., Jiang, Y., Zhou, Y., Luo, L., & Wu, Z. (2023). Sonochemically assisted the synthesis and catalytic application of bismuth-based photocatalyst: A mini review. Ultrasonics Sonochemistry, 100, 106600. https://doi.org/10.1016/j.ultsonch.2023.106600

Taazayet, W. B., Zouari, I. M., & Mliki, N. T. (2023b). Crystal field modification via rare earth ions (Dy, Nd) incorporation on BiFeO3 fine nanoparticles. Journal of Materials Science Materials in Electronics, 34(31). https://doi.org/10.1007/s10854-023-11487-3

Wrzesińska, A., Khort, A., Witkowski, M., Szczytko, J., Ryl, J., Gurgul, J., Kharitonov, D. S., Łątka, K., Szumiata, T., & Wypych-Puszkarz, A. (2021). Structural, electrical, and magnetic study of La-, Eu-, and Er- doped bismuth ferrite nanomaterials obtained by solution combustion synthesis. Scientific Reports, 11(1). https://doi.org/10.1038/s4159 8-021-01983-z

Downloads

Published

29.09.2025

How to Cite

Senbeto Kena, & Kebede Legesse. (2025). Investigation of Structural, optical, and Magnetic Properties of Ytterbium- Aluminum ions co-doped bismuth ferrite nano-Ceramics. Journal of Science, Technology and Arts Research, 14(3), 134–143. https://doi.org/10.20372/star.V14.i3.11

Issue

Section

Original Research

Categories

Plaudit