Effect of Holmium (III) Ion-Doped Nickel-Copper Ferrite Nanoparticle on Structural, Optical, and Dielectric Properties

Authors

DOI:

https://doi.org/10.20372/star.V14.i4.10

Keywords:

Nickel-Copper Ferrite, Dielectric Properties, Optical Properties, Sol-Gel Technique

Abstract

This article examined the effect of Ho3+-doped Nickel-Copper (Ni-Cu) ferrite nanoparticles on structural, optical, and dielectric parameters. XRD analysis revealed the structural retention in a single-phase cubic spinel structure. It demonstrated increasing Ho3+ ion concentration, with a decreased crystallite size ranging from 37.05 nm to 27.36 nm, mostly ascribed to ionic radii mismatch between the dopant and the pristine. Elemental composition of the sample was analyzed via Energy Dispersive X-ray spectroscopy, which confirms the sample's stoichiometric composition and good chemical purity. UV-Vis spectroscopy measurement revealed that the incorporation of  Ho3+significantly reduced the band gap (Eg) from 2.486 electron volts to 2.128 electron volts. This decrease is ascribed to the development of Ho3+-induced defect or impurity energy levels within the Ni-Cu ferrite's forbidden band gap, which enhances visible light absorption. Finally, impedance analysis confirmed the material's characteristic electrical response, revealing a sharp decrease in the real dielectric constant in the lower-frequency regions with applied field frequency, a relaxation phenomenon governed primarily by the Maxwell-Wagner interfacial polarization mechanism.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Senbeto Kena Etana, Wollega University

Department of Physics, College of Natural and Computational Sciences, Wollega University, Ethiopia

References

Attia, S., Helaili, N., Rekhila, G., Bessekhouad, Y., & Trari, M. (2022). Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light. Journal of Materials Science Materials in Electronics, 33(13), 9976–9987.

https://doi.org/10.1007/s10854-022-07989-1

Devsharma, S. C., Rahman, M. L., Hossain, M. J., Biswas, B., Ahmed, M. F., & Sharmin, N. (2024). Elucidation of structural, electromagnetic, and optical properties of Cu–Mg ferrite nanoparticles. Heliyon, 10 (13), e33 578.

https://doi.org/10.1016/j.heliyon.2024.e33578

Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S., & Witkowska, A. M. (2024). A comprehensive review of nanoparticles: from classification to application and toxicity. Molecules, 29 (15), 3482. https://doi.org/10.3390/molecules29153482

Guyett, P. C., Chew, D., Azevedo, V., Blennerhassett, L. C., Rosca, C., & Tomlinson, E. (2024). Optimizing SEM-EDX for fast, high-quality, and non-destructive elemental analysis of glass. Journal of Analytical Atomic Spectrometry, 39 (10), 2565–2579.

https://doi.org/10.1039/d4ja00212a

Hegde, V. N., Manju, V. V., & Hemaraju, B. C. (2024). Frequency and temperature-dependent dielectric properties of CuO nanoparticles. Chemical Physics Impact, 8, 100474. https://doi.org/10.1016/j.chphi.2024.100474

Heni, S., Rhouma, F. I. H., Hcini, S., Knani, S., Dhahri, A., Hlil, E. K., Gassoumi, M., & Khirouni, K. (2025). Structural, cation distribution, optical, and magnetic properties of Sol-Gel synthesized NI0.5CU0.5FE2O4 ferrite nanoparticles for optoelectronic and microwave devices. Journal of Materials Engineering and Performance. 34 (2), 1-17. https://doi.org/10.1007/s11665-025-12896-7

Kebede, L., & Elangovan, S. (2024). Dielectric properties of (1 − x) PMN–(x) AB ceramic nano powder. Advances in Applied Ceramics Structural Functional and Bioceramics, 123 (4–6), 90–96.

https://doi.org/10.1177/17436753241302223

Khasim, S., Ramakrishna, B. N., Pasha, A., & Manjunatha, S. O. (2023). Structural, optical, magnetic, and electrical properties of samarium (Sm3+)-doped copper–iron oxide ferrites for possible optoelectronic applications. Journal of Electronic Materials, 53(2), 801–814.

https://doi.org/10.1007/s11664-023-10797-w

Khitouni, M., & Suñol, J. (2024). Magnetic, dielectric, electrical, optical, and thermal properties of crystalline materials. Crystals, 14 (252), 1-4.

https://doi.org/10.3390/cryst14030252

Khoso, W. A., Haleem, N., Baig, M. A., & Jamal, Y. (2021). Synthesis, characterization, and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN's). Scientific Reports, 11(1), 3790.

https://doi.org/10.1038/s41598-021-83363-1

Konnova, S., & Rozhina, E. (2024). Magnetic Nanoparticles for Biomedical and Imaging Applications. International Journal of Molecular Sciences, 25(11), 5847.

https://doi.org/10.3390/ijms25115847

Mazurenko, J., K, S. A., Kaykan, L., Michalik, J. M., Gondek, L., Szostak, E., & Antoni, Ż. (2025). Impact of cation distribution in shaping the structural and magnetic characteristics of Ni-Cu ferrite. Physica Scripta, 100(3), 035940. https://doi.org/10.1088/1402-4896/adb2c3

Mısırlıoğlu, B. S., Kahya, N. D., &Öztürk, Z. (2024). Enhanced dielectric properties of coppersubstituted nickel ferrite nanoparticles for energy storage applications. Journal of Physics and Chemistry of Solids, 193, 112195.

https://doi.org/10.1016/j.jpcs.2024.112195

Mubasher, N., Mumtaz, M., Ali, H., Tariq, H. U., Ahmed, M., Ilyas, A., Inam-Ul-Haq, M., & Shahzad, M. F. (2024b). Effect of lithium doping on frequency-dependent dielectric properties of manganese ferrite nanoparticles. Applied Physics A, 130(2), 1-10.

https://doi.org/10.1007/s00339-023-07251-3

Mulud, F. H., Dahham, N. A., &Waheed, I. F. (2020). Synthesis and characterization of copper ferrite nanoparticles. IOP Conference Series Materials Science and Engineering, 928(7), 072125.

https://doi.org/10.1088/1757-899x/928/7/0721 25

Ozçelik, S. (2023). Copper ferrite nanoparticles: structural, magnetic, optical, photocatalytic activity and blood compatibility properties. BioNanoScience, 13(3), 958–972.

https://doi.org/10.1007/s12668-023-01130-0

Priyadharsini, R., Manoharan, C., Bououdina, M., Sagadevan, S., Venkateshwarlu, M., & Bahadur, S. A. (2023). Impact of nickel substitution on structural, dielectric, magnetic, and electrochemical properties of copper ferrite nanostructures for energy storage devices. Journal of Colloid and Interface Science, 653, 917–929.

https://doi.org/10.1016/j.jcis.2023.09.113

Routray, S., Pradhan, S. K., Parida, B. N., & Das, R. (2025). Effect of holmium doping on structural, optical, dielectric and magnetic properties of cobalt ferrite. Bulletin of Materials Science, 48(1), 12. https://doi.org/10.1007/s12034-024-03385-z

Samani, M. S., Sharifi, H., Sharifi, I., Mobarakeh, S. A. E., &Isfahani, T. (2023). Effect of Cu doping on the structural and magnetic properties of MnFe2O4 nanoparticles. Applied Physics A, 129(5), 319.

.https://doi.org/10.1007/s00339-023-06503-6

Senbeto, K. &. Kebede, L. (2025). Investigation of structural, optical, and magnetic properties of ytterbium-aluminum ions co-doped bismuth ferrite nano-ceramics. Science, Technology and Arts Research Journal, 14(3), 134–143. https://doi.org/10.20372/star.v14.i3.11

Sharma, S., Verma, M. K., Sharma, N. D., Choudhary, N., Singh, S., & Singh, D. (2021). Rare- earth doped Ni–Co ferrites synthesized by Pechini method: Cation distribution and high temperature magnetic studies. Ceramics International, 47(12), 17510–17519. https://doi.org/10.1016/j.ceramint.2021.03.069

Sinha, A., & Dutta, A. (2020). Structural, optical, and electrical transport properties of some rare-earth-doped nickel ferrites: A study on effect of ionic radii of dopants. Journal of Physics and Chemistry of Solids, 145, 109534. https://doi.org/10.1016/j.jpcs.2020.109534

Slimani, Y., Almessiere, M. A., Baykal, A., Klygach, D. S., Trukhanov, S. V., Trukhanov, A. V., and Ul-Hamid, A.(2024). Structural, magnetic, electromagnetic, and hyperfine interactions of rare earth Ho doped in mixed Co–Ni spinel ferrites. Journal of Applied Physics A, 131 (6), 1-17.

https://doi.org/10.1007/s00339-025-08493-x

Sukumar, M., Rajabathar, J. R., Al-Lohedan, H., Suresh, S., Dash, C. S., Sundararajan, M., Subudhi, P. S., Arokiyaraj, S., Yanmaz, E., Yuvaraj, S., & Isaac, R. R. (2023). Synthesize and characterization of copper doped nickel ferrite nanoparticles effect on magnetic properties and visible light catalysis for rhodamine dye degradation mechanism. Journal of Alloys and Compounds, 953, 169902. https://doi.org/10.1016/j.jallcom.2023.169902

Takalloo, F., Gholizadeh, A., & Ardyanian, M. (2024). Crystal structure-physical properties correlation in Ni–Cu–Zn spinel ferrite. Journal of Materials Science Materials in Electronics, 35 (27), 1792.

https://doi.org/10.1007/s10854-024-13574-5

Taleb, M. F. A., Ibrahim, M. M., Rahman, A., & El-Bahy, Z. M. (2024). Magnetic response of Ho3+ doped Ni0.4Cu0.6HoyFe2-yO4 spinel ferrites and their correlation with crystallite size. Ceramics International, 50 (19), 37077--37084.

https://doi.org/10.1016/j.ceramint.2024.07.096

Taleb, N. I., Saci, A., Chebout, M., & Bendouani, S. (2023). A complete review on UV-visible spectroscopic technique. International Journal of Research and Development in Pharmacy and Life Sciences, 12 (4), 1–9.

https://doi.org/10.35629/7781-070612881299

Umut, E., Coşkun, M., Pineider, F., Berti, D., & Güngüneş, H. (2019). Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. Journal of Colloid and Interface Science, 550, 199–209.

https://doi.org/10.1016/j.jcis.2019.04.092

Wasnik, P. B., Rokade, S. D., & Rewatkar, K. G. (2023). Review Paper on Ni-Cu ferrite. Proceedings of the National Academy of Sciences India Section A: Physical Sciences, 93 (3), 517–523.

https://doi.org/10.1007/s40010-023-00844-w

Wyckoff. (1964). Crystallography Open Database: Information card for entry 5910028. (n.d.). https://www.crystallography.net/cod/5910028.html

Downloads

Published

31.12.2025

How to Cite

Senbeto Kena Etana. (2025). Effect of Holmium (III) Ion-Doped Nickel-Copper Ferrite Nanoparticle on Structural, Optical, and Dielectric Properties. Journal of Science, Technology and Arts Research, 14(4), 142–152. https://doi.org/10.20372/star.V14.i4.10

Issue

Section

Original Research

Categories

Plaudit