Anti-oxidant studies on phyto mediated synthesis and characterization of ZnO Nanoparticles using Croton macrostachyus Leaf Extract
DOI:
https://doi.org/10.20372/star.v13i1.05Keywords:
XPS, SEM-EDX, HRTEM, Phyto- mediated, antioxidant activitiesAbstract
The size range of nanomaterials spans from one nanometer to one hundred nanometers. Nanomaterials synthesized from metal oxides using phytochemical extracts from plants are currently quite popular owing to their wide range of potential uses. The researcher in this study so concentrated on producing ZnO nanoparticles by solution-burning a water-based extract from the Croton macrostachyus plant. Flavonoids, tannins, and phenolic compounds are some of the secondary metabolites of Croton macrostachyus that may help with the phyto-mediated synthesis of nanoparticles by reducing their size, stabilizing them, and sealing them. In order to create ZnO nanoparticles, this research utilized the precursor Zn (CH3COO)2.3H2O. The synthesized samples were characterized using a variety of imaging techniques, including powder X-ray diffraction, Fourier transform infrared, ultraviolet, visible, and diffuse reflectance, X-ray photoelectron, imaging electron microscopy, scanning electron microscopy with energy dispersive X-ray, and a high-resolution imaging electron microscope. Although DDPH and ZnO nanoparticles exhibited lower scavenging activity than ascorbic acid at low concentrations, this improved with increasing sample concentration. The optical band gap energy of ZnO nanoparticles was 3.20 eV.
Downloads
Metrics
References
Ahmad, W., & Kalra, D. (2020). Green synthesis, characterization and anti-microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University-Science, 32(4), 2358-2364.
Ahmed, S., Chaudhry S.A, Ikram S., (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J. Photochem. Photobiol. B 166, 272–284
Barani, M., Masoudi, M., Mashreghi, M., Makhdoumi, A., & Eshghi, H. (2021). Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. International Journal of Pharmaceutics, 606, 120878.
Cahino, A. M., Loureiro, R. G., Dantas, J., Madeira, V. S., & Fernandes, P. C. R. (2019). Characterization and evaluation of ZnO/CuO catalyst in the degradation of methylene blue using solar radiation. Ceramics International, 45(11), 13628-13636.
Carofiglio, M., Barui, S., Cauda, V., & Laurenti, M. (2020). Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Applied Sciences, 10(15), 5194.
Chen, C., Liu, X., Fang, Q., Chen, X., Liu, T., & Zhang, M. (2020). Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight. Vacuum, 174, 109198.
Chong, H. W., Rezaei, K., Chew, B. L., & Lim, V. (2018). Chemometric profiling of Clinacanthus nutans leaves possessing antioxidant activities using ultraviolet-visible spectrophotometry. Chiang Mai J. Sci, 45, 1-12.
Danish, M. S. S., Bhattacharya, A., Stepanova, D., Mikhaylov, A., Grilli, M. L., Khosravy, M., & Senjyu, T. (2020). A systematic review of metal oxide applications for energy and environmental sustainability. Metals, 10(12), 1604.
Elemike, E. E., Onwudiwe, D. C., & Singh, M. (2020). Eco-friendly synthesis of copper oxide, zinc oxide and copper oxide–zinc oxide nanocomposites, and their anticancer applications. Journal of Inorganic and Organometallic Polymers and Materials, 30, 400-409.
Faye, G., Jebessa, T., & Wubalem, T. (2022). Biosynthesis, characterization and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract. IET nanobiotechnology, 16(1), 25-32.
Gul, R., Jan, S. U., Faridullah, S., Sherani, S., & Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. The Scientific World Journal, 2017.
Jenkin, J. (2001). A unique partnership: William and Lawrence Bragg and the 1915 Nobel Prize in physics. Minerva, 39(4), 373-392.
Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS microbiology letters, 279(1), 71-76.
Mansoori, A., Singh, N., Dubey, S. K., Thakur, T. K., Alkan, N., Das, S. N., & Kumar, A. (2020). Phytochemical characterization and assessment of crude extracts from Lantana camara L. for antioxidant and antimicrobial activity. Frontiers in Agronomy, 2, 582268.
Maroyi, A. (2017). Ethnopharmacological uses, phytochemistry, and pharmacological properties of Croton macrostachyus Hochst. Ex Delile: a comprehensive review. Evidence-Based Complementary and Alternative Medicine, 2017.
Masho, T. J., Arasu, P. T., Bogale, R. F., AmareZerrefa, E., & Ramamurthy, S. (2024). Green synthesis, characterization of Ag2O/CuO/ZnO nano composites using aqueous extract of Croton macrostachyus leaf for Photo degradation, anti-microbial and antioxidant activities. Results in Chemistry, 101369.
Mutukwa, D., Taziwa, R. T., & Khotseng, L. (2022). Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. Nanomaterials, 12(24), 4469.
Najoom, S., Fozia, F., Ahmad, I., Wahab, A., Ahmad, N., Ullah, R.,& Khan, A. A. (2021). Effective antiplasmodial and cytotoxic activities of synthesized zinc oxide nanoparticles using Rhazya stricta leaf extract. Evidence-based Complementary and Alternative Medicine, 2021, 1-9.
Parbuntari, H., Prestica, Y., Gunawan, R., Nurman, M. N., & Adella, F. (2018). Preliminary phytochemical screening (qualitative analysis) of cacao leaves (Theobroma cacao L.). EKSAKTA: Berkala Ilmiah Bidang MIPA, 19(2), 40-45.
Peralta-Videa, J. R., Huang, Y., Parsons, J. G., Zhao, L., Lopez-Moreno, L., Hernandez-Viezcas, J. A., & Gardea-Torresdey, J. L. (2016). Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis. Nanotechnology for Environmental Engineering, 1, 1-29.
Qin, C., Wang, Y., Gong, Y., Zhang, Z., & Cao, J. (2019). CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. Journal of Alloys and Compounds, 770, 972-980.
Ram, S., & Sinha, V. S. (2015). Qualitative phytochemical analysis of some plants uses to cure malaria in Kolhan region of Jharkhand, India. J Med Plants Stud, 3, 60-62.
Saptarini, N. M., Herawati, I. E., & Permatasari, U. Y. (2016). Total flavonoids content in acidified extract of flowers and leaves of gardenia (Gardenia jasminoides Ellis). Asian Journal of Pharmaceutical and Clinical Research, 9(1), 213-215.
Singh, V., & Kumar, R. (2017). Study of phytochemical analysis and antioxidant activity of Allium sativum of Bundelkhand region. International Journal of Life-Sciences Scientific Research, 3(6), 1451-1458.
Tanna, J. A., Chaudhary, R. G., Gandhare, N. V., Rai, A. R., Yerpude, S., & Juneja, H. D. (2016). Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity. Journal of Experimental Nanoscience, 11(11), 884-900.
Terefe, E. M., Okalebo, F. A., Derese, S., Langat, M. K., Mas-Claret, E., Aljarba, N. H., & Muriuki, J. (2022). In vitro anti-HIV and cytotoxic effects of pure compounds isolated from Croton macrostachyus Hochst. Ex Delile. BMC Complementary Medicine and Therapies, 22(1), 159.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Science, Technology and Arts Research
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
STAR © 2023 Copyright; All rights reserved
Accepted 2024-03-18
Published 2024-03-30