Application Rates of Moringa (Moringa stenopetala) Leaf Powder Enhanced Maize Growth, Yield Components, and Soil Chemical Properties

Authors

  • Biyeshi A. Abdissa Jimma University
  • Dawit Dereje Jimma University
  • Adise Feyisa Jimma University
  • Fernuse Gebiyaw Jimma University
  • Gerba Daba Jimma University

DOI:

https://doi.org/10.20372/afnr.v2i2.1145

Keywords:

Green manure, Maize, Moringa leaf, Soil properties, Yield components

Abstract

This study was aimed to determine the effects of different rates of MLP application on maize growth, yield components, and soil chemical properties under greenhouse conditions. The experiment consisted of four treatments having 0 (control), 25g, 50g, and 75g of MLP, along with 2.1 g of Di-ammonium phosphate and 2.1g of UREA. The treatments were assigned in a randomized complete block design and replicated three times. The analysis of variance indicated that most maize growth parameters at 40, 70, and 100 days after planting (DAP) were significantly (P<0.05) influenced by MLP application rates. The highest maize growth parameters at all growth stages were recorded in pots treated with 75g of MLP. However, most of the maize yield components were higher under CF. Results also revealed that almost all tested soil chemical parameters at six weeks of incubation and 100 DAP were significantly (P<0.05) influenced by MLP application rates, with the highest values recorded in pots treated with 75g of MLP. In conclusion, the highest maize growth, yield components, and soil chemical properties were obtained from the pots treated with 75g of MLP. The results of this study suggest that the application of MLP at a rate of 75g can enhance maize growth and improve soil chemical properties under greenhouse conditions. However, further studies should be conducted on economic feasibility under field conditions to provide conclusive recommendations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Biyeshi A. Abdissa, Jimma University

Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia.

Dawit Dereje , Jimma University

Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia.

Adise Feyisa, Jimma University

Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia

Fernuse Gebiyaw, Jimma University

Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia.

Gerba Daba, Jimma University

Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia.

References

Abate, T., Shiferaw, B., Menkir, A., Wegary, D., Kebede, Y., Tesfaye, K., Kassie, M., Bogale, G. Tadesse, B. & Keno T. (2015). Factors that transformed maize productivity in Ethiopia. Food Security 7: 965-981. https://link.springer.com/article/10.1007/s12571-015-0488-z

Abay, A., Birhane, E., Taddesse, T., & Hadgu, K. M. (2015). Moringa Stenopetala tree species improved selected soil properties and socio-economic benefits in Tigray, Northern Ethiopia. Science, Technology and Arts Research Journal, 4(2), 68-78. https://www.researchgate.net/publication/301277841

Abd El-Hack, M. E., Alagawany, M., Elrys, A. S., Desoky, E. S. M., Tolba, H. M., Elnahal, A. S., Elnesr, S. S. & Swelum, A. A. (2018). Effect of forage Moringa oleifera L. (moringa) on animal health and nutrition and its beneficial applications in soil, plants and water purification. Agriculture, 8(9), 145. https://doi.org/10.3390/agriculture8090145

Abebe, T. G., Tamtam, M. R., Abebe, A. A., Abtemariam, K. A., Shigut, T. G., Dejen, Y. A., & Haile, E. G. (2022). Growing use and impacts of chemical fertilizers and assessing alternative organic fertilizer sources in Ethiopia. Applied and Environmental Soil Science, 1, 4738416. https://doi.org/10.1155/2022/4738416

Abuye, C., Urga, K., Knapp, H., Selmar, D., Omwega, A. M., Imungi, J. K., & Winterhalter, P. (2003). A compositional study of Moringa stenopetala leaves. East African Medical Journal, 80(5), 247-252

Aleminew, A., & Alemayehu, M. (2020). Soil fertility depletion and its management options under crop production perspectives in Ethiopia: A review. Agricultural Reviews, 41(2), 91-105. doi10.18805/ag.R-136

Alkuwayti, M. A., El-Sherif, F., Yap, Y. K., & Khattab, S. (2020). Foliar application of Moringa oleifera leaves extract altered stress-responsive gene expression and enhanced bioactive compounds composition in Ocimum basilicum. South African Journal of Botany, 129, 291-298. http://doi.org/10.1016/j.sajb.2019.08.001

Aluko, M., Ayodele, O. J., Samuel Gbadeola, A., & Oni, I. H. (2017). Comparative effects of Varying Rates of Moringa Leaf, Poultry Manure and NPK Fertilizer on the Growth, Yield and Quality of Okra (Abelmoschus esculentus L. Moench). International journal of environment, agriculture and biotechnology, 2(6), 238981. http://dx.doi.org/10.22161/ijeab/2.6.17

Day P. R. (1965). Particle fractionation and particle-size analysis. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9:545-567. DOI:10.2134/agronmonogr9.1.c43

Ekene, E. N., Ezeaku, P., & Ndubaku, U. M. (2014). Contributions of moringa (Moringa oleifera) tree foliage for enrichment of soil nutrient status. The International Journal of Science and Technoledge, 2(4), 350. www.theijst.com

Ekene, E. N., & Uchenna, N. M. (2023). Utilization of Moringa Leaves and Pods as Organic Fertilizers in Enhancing Soil Fertility and Crop Growth. In Hakeem, K. R. (Eds.), Organic Fertilizers-New Advances and Applications. IntechOpen. DOI:10.5772/intechopen.1001329

Elzaawely, A. A., Ahmed, M. E., Maswada, H. F., & Xuan, T. D. (2017). Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Archives of Agronomy and Soil Science, 63(5), 687-699. http://dx.doi.org/10.1080/03650340.2016.1234042

Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: trends and R&D implications. Food security, 14(5), 1295-1319. https://doi.org/10.1007/s12571-022-01288-7

FAOSTAT (2022). Statistical databases and data-sets of the Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#compare, Accessed on 22nd February 2024

Foidl, N., Makkar, H. P. S., & Becker, K. (2001). The potential of moringa oleifera for agricultural and industrial uses.

Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agricultural Research. 2nd Edition, John Wiley and Sons, New York, 680.

Haile, M., Duguma, H. T., Chameno, G., & Kuyu, C. G. (2019). Effects of location and extraction solvent on physico-chemical properties of Moringa stenopetala seed oil. Heliyon, 5(11). https://doi.org/10.1016/j.heliyon.2019.e02781

Jiru, D., Sonder, K., Alemayehu, L., Mekonen, Y., & Anjulo, A. (2006). Leaf yield and nutritive value of Moringa stenopetala and Moringa oleifera accessions: Its potential role in food security in constrained dry farming agroforestry system. Proceedings of the Moringa and other highly nutritious plant resources: Strategies, standards and markets for a better impact on nutrition in Africa, Accra, Ghana, 16-18.

Jordan-Meille, L., & Pellerin, S. (2004). Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant and Soil, 265(1), 75-92. https://www.jstor.org/stable/42951584

Kumssa, D. B., Joy, E. J., Young, S. D., Odee, D. W., Ander, E. L., & Broadley, M. R. (2017). Variation in the mineral element concentration of Moringa oleifera Lam. and M. stenopetala (Bak. f.) Cuf.: Role in human nutrition. PloS one, 12(4), e0175503. https://doi.org/10.1371/journal.pone.0175503

Landon, J. R. (1991). A handbook for soil survey and agricultural evaluation in the tropics and subtropics. Booker Tropical soil manual.

Muluneh, M. W., Talema, G. A., Abebe, K. B., Dejen Tsegaw, B., Kassaw, M. A., & Teka Mebrat, A. (2022). Determinants of organic fertilizers utilization among smallholder farmers in South Gondar zone, Ethiopia. Environmental Health Insights, 16,11786302221075448. doi: 10.1177/11786302221075448

Ntshambiwa, K. T., Seifu, E., & Mokhawa, G. (2023). Nutritional composition, bioactive components and antioxidant activity of Moringa stenopetala and Moringa oleifera leaves grown in Gaborone, Botswana. Food Production, Processing and Nutrition, 5(1), 7. https://doi.org/10.1186/s43014-022-00124-x

Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156(3-4), 75-83. H.ttps://doi:10.1016/j.geoderma.2010.02.003

Santpoort, R. (2020). The drivers of maize area expansion in Sub-Saharan Africa. How policies to boost maize production overlook the interests of smallholder farmers. Land, 9(3), 68. http://doi:10.3390/land9030068

Seid, M. A. (2013). Medicinal and dietary role of Moringa stenopetala (Bak. f.) Cuf. South Ethiopia: A Review. African Journal of Agricultural Science and Technology, 1(1), 1-6.

Seifu, E. (2015). Actual and potential applications of Moringa stenopetala, underutilized indigenous vegetable of Southern Ethiopia: a review. International Journal of Agricultural and Food Research, 3(4).

Sime, G., & Aune, J. B. (2014). Maize response to fertilizer dosing at three sites in the Central Rift Valley of Ethiopia. Agronomy, 4(3), 436-451. https://doi.org/10.3390/agronomy4030436

Spielman, D. J., Alemu, D. & Mekonnen, D. K. (2013). Seed, fertilizer, and agricultural extension in Ethiopia. In Dorosh P. and Rashid S. (eds.), Food and Agriculture in Ethiopia: Progress and Policy Challenges. Philadelphia: University of Pennsylvania Press, 84-122.

Tadesse, T., Haque, I., & Aduayi, E. A. (1991). Soil, plant, water, fertilizer, animal manure and compost analysis manual. Working Document, International Livestock Centre for Africa, Addis Ababa, Ethiopia. https://hdl.handle.net/10568/4448

Undie, U. L., Kekong, M. A., & Ojikpong, T. O. (2013). Moringa (Moringa oleifera Lam.) leaves effect on soil pH and garden egg (Solanum aethiopicum L.) yield in two Nigeria agro-ecologies. European Journal of Agriculture and Forestry Research. www.ea-journals.org

Varkey, A. J. (2020). Purification of river water using Moringa Oleifera seed and copper for point-of-use household application. Scientific African, 8, e00364. https://doi.org/10.1016/j.sciaf.2020.e00364

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.

Worku, M., Twumasi Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G. & Prasanna, B. M. (2012). Meeting the challenges of global climate change and food security through innovative maize research. Proceedings of the National Maize Workshop of Ethiopia, 3; Addis Ababa, Ethiopia; 18-20 April, 2011. CIMMYT.

Yisehak, K., Solomon, M., & Tadelle, M. (2011). Contribution of Moringa (Moringa stenopetala, Bac.), a highly nutritious vegetable tree, for food security in south Ethiopia: a review. Asian Journal of Applied Sciences, 4(5), 477-488. DOI: 10.3923/ajaps.2011.477.488

Zerssa, G., Feyssa, D., Kim, D. G., & Eichler-Löbermann, B. (2021). Challenges of smallholder farming in Ethiopia and opportunities by adopting climate-smart agriculture. Agriculture, 11(3), 192. https://doi.org/10.3390/agriculture11030192

Downloads

Published

31.08.2024

How to Cite

Abdissa, B. A., Dereje , D., Feyisa, A., Gebiyaw, F., & Daba, G. (2024). Application Rates of Moringa (Moringa stenopetala) Leaf Powder Enhanced Maize Growth, Yield Components, and Soil Chemical Properties . Journal of Agriculture, Food and Natural Resources, 2(2), 34–42. https://doi.org/10.20372/afnr.v2i2.1145
Received 2024-08-15
Accepted 2024-08-29
Published 2024-08-31

Plaudit