Optimization of the Effects of Nixtamalization on the Nutritional and Anti-Nutritional Contents of Quality Protein Maize Flour
DOI:
https://doi.org/10.20372/afnr.v1i1.603Keywords:
Keywords: Anti-nutritional factors, Nixtamalization, Proximate compositions, Quality protein maizeAbstract
Maize is the world’s most significant cereal grain, which provides nourishment for both human beings and living animals. For that reason, the utilization of maize in developing countries calls for investigations of processing methods to evaluate and enhance nutritional compositions. This study aimed to evaluate the effect of nixtamalization on the nutrient and anti-nutrient contents of quality protein maize (QPM). A response surface experimental design was used at three levels of each factor: cooking time (20, 40, and 60 minutes), steeping time (8, 12, and 16 hours), and lime concentration (1.0, 1.5, and 2.0%). The results showed that all the factors significantly (p<0.05) affected the nutrient and anti-nutrient composition of the nixtamalized QPM (NQPM). Numerical optimization showed that higher nutrient and lower anti-nutrient contents were obtained at a cooking time of 20 minutes, steeping time of 8 hours, and lime concentration of 1.0%. The mean values of moisture, protein, fat, fiber, ash, carbohydrate, energy, tannin, phytate, and oxalate composition of the NQPM flour were 8.9%, 10.9%, 5.4%, 1.7%, 1.9%, 71.0%, 376.8 kcal/100g, 2.0 mg/100g, 6.5 mg/100g and 1.2 mg/100g, respectively. The nutritional value of NQPM flour was improved at the optimum condition.
Downloads
Metrics
References
Almeida-Dominguez, H. D., Cepeda, M., & Rooney, L. W. (1996). Properties of commercial nixtamalized corn flours. Cereal Foods World, 41(7), 624–630.
AOAC International. (2005). Official methods of analysis of AOAC International (18th ed.). AOAC International.
Balemi, T., Kebede, M., Golla, B., Tufa, T., & Chala, G. (2020). Phenological and grain yield response of hybrid maize varieties , released for differing agro-ecologies , to growing temperatures and planting dates in Ethiopia. African Journal of Agricultural Research, 16(12), 1730–1739. https://doi.org/10.5897/AJAR2020.15103
Boniface, O. O., & Gladys, M. E. (2011). Effect of Alkaline Soaking and Cooking on the Proximate , Functional and Some Anti-Nutritional Properties of Sorghum Flour. AU J.T., 14(3), 210–216.
Bressani, R. (1990). Chemistry, Technology, and Nutritive Value of Maize Tortillas. Food Reviews International, 6(2), 225–264.
Bressani, R., Turcios, J. C., Ruiz, A. S. C. De, & Palomo, P. P. De. (2004). Effect of Processing Conditions on Phytic Acid , Calcium , Iron , and Zinc Contents of Lime-Cooked Maize. J. Agric. Food Chem., 52, 1157–1162.
Charley, H.; and Weaver, C. (1998). Foods: A scientific approach. Macmillan Publishers, London, UK.
CSA. (2018). Agricultural sample survey: report on area and production of major crops private peasant holdings Meher season. In the Federal Democratic Republic of Ethiopia Central Statistical Agency: Vol. V. I.
Demeke, K. H. (2018). Nutritional Quality Evaluation of Seven Maize Varieties Grown in Ethiopia. Biochemistry and Molecular Biology, 3(2), 45. https://doi.org/10.11648/j.bmb.20180302.11
Ejigui, J., Savoie, L., Marin, J., & Desrosiers, T. (2007). Improvement of the nutritional quality of a traditional complementary porridge made of fermented yellow maize (Zea mays): Effect of maize – legume combinations and traditional processing methods. Food and Nutrition Bulletin, 28(1), 23–34.
Ekpa, O., Palacios-rojas, N., Kruseman, G., Fogliano, V., & Linnemann, A. R. (2018). Sub-Saharan African maize-based foods : Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Global Food Security, 17, 48–56. https://doi.org/10.1016/j.gfs.2018.03.007
Escalante-aburto, A., Mariscal-moreno, R. M., Santiago-, D., & Ponce-garcía, N. (2019). An Update of Different Nixtamalization Technologies, and Its Effects on Chemical Composition and Nutritional Value of Corn Tortillas. Food Reviews International, 0(0), 1–43. https://doi.org/10.1080/87559129.2019.1649693
Farinde, E. O., Dauda, T. O., & Obatolu, V. A. (2021). Heteroscedasticity analysis of nixtamalization effect on nutrients , digestibility , and functional properties of quality protein maize and indigenous local maize flour. J Food Process Preserv., 45, 1–11. https://doi.org/10.1111/jfpp.15303
Frias, J., Vidal-Valverde, C., Sotomayor, C., Diaz-Pollan, C., & Urbano, G. (2000). Influence of processing on available carbohydrate content and antinutritional factors of chickpeas. European Food Research and Technology, 210(5), 340–345. https://doi.org/10.1007/s002170050560
Gaytán-martínez, M., Cabrera-ramírez, Á. H., Morales-Sanchez, E., Ramírez-jiménez, A. K., Cruz-ramírez, J., Campos-vega, R., Velazquez, G., Loarca-Piña, G., & Mendoza, S. (2017). Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science Please. https://doi.org/10.1016/j.jcs.2017.06.014
Gómez, M. H., Waniska, R. D., & Rooney, L. W. (1991). Starch Characterization of Nixtamalized Corn Flour. In Cereal Chemistry (Vol. 68, Issue 6, pp. 578–582).
Gutiérrez-Corteza, E., Rojas-Molina, J. I., Zambrano-Zaragoza, M. L., Quintanar-Guerrero, D., González-Reza, R. M., Rojas-Molina, A., & Espinosa-Arbeláez, D. G. (2013). Effect of processing conditions on the production of nixtamalized corn flours by the traditional method. CyTA - Journal of Food, 37–41. https://doi.org/10.1080/19476337.2013.778904
Inyang, U. E., Akindolu, B. E., & Elijah, A. I. (2019). Nutrient Composition, Amino Acid Profile and Anti-nutritional Factors of Nixtamalized Maize Flour Supplemented with Sprouted Soybean Flour. European Journal of Nutrition & Food Safety, 9(1), 41–51. https://doi.org/10.9734/ejnfs/2019/46150
Jiménez, B. C., Toledo, M. E. O., Mier, L. G., Bravo, R. M., Alberto, C., Gutiérrez, G., Curiel, F., Rodriguez-garcia, M. E., Contreras, B., Toledo, M. E. O., Mier, L. G., Bravo, R. M., Alberto, C., Gutiérrez, G., Ayala, F. C., & Rodriguez-Garcia, M. E. (2020). Physicochemical study of nixtamalized corn masa and tortillas fortified with “ chapulin ” (grasshopper , Sphenarium purpurascens) flour. CyTA - Journal of Food, 18(1), 527–534. https://doi.org/10.1080/19476337.2020.1794980
Kadir, S., Ahmad, L., & Bait, Y. (2019). Proximate and calcium analysis of nixtamalized corn grits as a raw material of Gorontalo traditional meal , Indonesia. NUSANTARA BIOSCIENCE, 11(1). https://doi.org/10.13057/nusbiosci/n1101xx
Lewu, M. N., Adebola, P. O., & Afolayan, A. J. (2010). Comparative assessment of the nutritional value of commercially available cocoyam and potato tubers in South Africa. Journal of Food Quality, 33(4), 461–476. https://doi.org/10.1111/j.1745-4557.2010.00325.x
Maureen, N., Kaaya, A. N., Kauffman, J., Narrod, C., & Atukwase, A. (2020). Enhancing Nutritional Benefits and Reducing Mycotoxin Contamination of Maize through Nixtamalization. Journal of Biological Sciences, 20(4), 153–162. https://doi.org/10.3923/jbs.2020.153.162
Maxson, E. D., & Rooney, L. W. (1972). Two Methods of Tannin Analysis for Sorghum Bicolor (L.) Moench Grain. Crop Scince, 12, 253–254.
Méndez-Montealvo, G., Solorza-Feria, J., Valle, M. V. del, Gómez-Montiel, N., Paredes-López, O., & Bello-Pérez, L. A. (2005). Chemical Composition and Calorimetric Characterization of Hybrids and Varieties of Maize Cultivated In México. Publicado Como ARTÍCULO En Agrociencia, 39(3), 267–274.
Mensah, J., Aidoo, R., & Teye, A. (2013). Analysis of Street Food Consumption Across Various Income Groups in the Kumasi Metropolis of Ghana. International Review of Management and Business Research, 2(4), 951–961.
Milan-Carrillo, J., Gutierrez-Dorado, R., Cuevas-Rodriguez, E. O., Garzon-Tiznado, J. A., & Reyes-Moreno, C. (2004). Nixtamalized Flour From Quality Protein Maize (Zea mays L). Optimization of Alkaline Processing. Plant Foods for Human Nutrition, 59, 35–44.
Morales, J. C., & Zepeda, R. A. G. (2017). Effect of Different Corn Processing Techniques in the Nutritional Composition of Nixtamalized Corn Tortillas. Journal of Nutrition & Food Sciences, 7(2). https://doi.org/10.4172/2155-9600.1000580
Ocheme, O. B., Oludamilola, O. O., & Gladys, M. E. (2010). Effect of Lime Soaking and Cooking (Nixtamalization) on the Proximate, Functional and Some Anti-nutritional Properties of Millet Flour. AU J.T., 14(2), 131–138.
Oladapo, A. S., Adepeju, A. B., Akinyele, A. ., & Adepeju, D. . (2017). The Proximate , Functional and Anti-Nutritional Properties of Three Selected Varieties of Maize (Yellow , White and Pop Corn) Flour. International Journal of Scientific Engineering and Science, 1(2), 23–26.
Olaoye, O. A., Onilude, A. A., & Oladoye, C. O. (2007). Breadfruit flour in biscuit making : effects on product quality. African Journal of Food Science, 020–023.
Pflugfelder, R. L., Rooney, L. W., & Waniska, R. D. (1988). Dry matter losses in commercial corn masa production. Cereal Chemistry, 65(2), 127–132.
Price, M. L., & Butler, L. G. (1977). Rapid Visual Estimation and Spectrophotometric Determination of Tannin Content of Sorghum Grain. J. Agric. Food Chem., 25(6), 1268–1273.
Prieto, S., Ricker-Gilbert, J., & Bauchet, O. (2021). Incomplete Information and Product Quality in Rural Markets : Evidence from an Experimental Auction for Maize in Senegal. Economic Development and Cultural Change, 1351–1377.
Reyes-moreno, C., Ayala-rodríguez, A. E., Milán-carrillo, J., Mora-rochín, S., López-valenzuela, J. A., & Valdez-ortiz, A. (2013). Production of nixtamalized fl our and tortillas from amarantin transgenic maize lime-cooked in a thermoplastic extruder. Journal of Cereal Science, 58(3), 465–471. https://doi.org/10.1016/j.jcs.2013.09.008
Salazar, R., Arámbula-villa, G., Luna-bárcenas, G., Figueroa-cárdenas, J. D., & Azuara, E. (2014). LWT - Food Science and Technology Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT - Food Science and Technology, 56(1), 87–92. https://doi.org/10.1016/j.lwt.2013.10.046
Serna-Saldivar, S. O., Rooney, L. W., & Greene, L. W. (1991). Effect of Lime Treatment on the Availability of Calcium in Diets of Tortillas and Beans: Rat Growth and Balance Studies. Ceral Chemistry, 68(6), 565–570.
Sotelo, A., González-osnaya, L., Sánchez-chinchillas, A., & Trejo, A. (2010). Role of oxate , phytate , tannins and cooking on iron bioavailability from foods commonly consumed in Mexico. International Journal of Food Sciences and Nutrition, 61(1), 29–39. https://doi.org/10.3109/09637480903213649
Sunico, D. J. A., Rodriguez, F. M., Tuaño, A. P. P., Mopera, L. E., Atienza, L. M., & Juanico, C. B. (2021). Physicochemical and Nutritional Properties of Nixtamalized Quality Protein Maize Flour and its Potential as Substitute in Philippine Salt Bread. Chiang Mai University Journal of Natural Sciences, 20(2), 1–15. https://doi.org/10.12982/CMUJNS.2021.035
Upreti, P., Mckay, L. L., & Metzger, L. E. (2006). Influence of Calcium and Phosphorus , Lactose , and Salt-to-Moisture Ratio on Cheddar Cheese Quality : Changes in Residual Sugars and Water-Soluble Organic Acids During Ripening. Journal of Dairy Science, 89(2), 429–443. https://doi.org/10.3168/jds.S0022-0302(06)72107-5
Vaintraub, I. A., & Lapteva, N. A. (1988). Calorimetric Determination of Phytate in Unpurified Extracts of Seeds and the Products of Their Processing. Analytical Biochemistry, 175, 227–230.
Yetneberk, S., Teamir, M., & Teklewold, A. (2019). Maize Based Food Products in Ethiopia: A Review of Traditional Practices and Research Outputs.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Agriculture, Food and Natural Resources
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal of Agriculture, Food and Natural Resources
Wallaga University,
All rights reserved.
Accepted 2023-09-06
Published 2023-09-30